

FIRST QUARTER 2015 ENVIRONMENTAL MONITORING REPORT FORMER JAMESTOWN LANDFILL JAMESTOWN, RHODE ISLAND

PREPARED FOR:

Town of Jamestown Jamestown, Rhode Island

PREPARED BY:

GZA GeoEnvironmental, Inc. Providence, Rhode Island

June 10, 2015 File No. 32220.27

Copyright© 2015 GZA GeoEnvironmental, Inc.

TABLE OF CONTENTS

Page

1.00	INTRODUCTION	1
2.00	GROUNDWATER SAMPLING AND LANDFILL GAS SURVEY	1
	2.10 GROUNDWATER SAMPLING2.20 PERIMETER LANDFILL GAS SURVEY	1 2
3.00	GROUNDWATER SCREENING AND ANALYTICAL RESULTS	3
4.00	 3.10 FIELD SCREENING PARAMETERS 3.20 INORGANIC ANALYTES 3.30 VOLATILE ORGANIC COMPOUNDS 3.40 WATER QUALITY PARAMETERS 3.50 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) COMPARISON OF CURRENT RESULTS WITH PREVIOUS RESULTS 4.10 INORGANIC ANALYTES 	3 3 4 5 5 5
	4.10 INORGANIC ANALYTES4.20 VOLATILE ORGANIC COMPOUNDS	6 6
5.00	STATISTICAL DATA EVALUATION	7
6.00	CONCLUSIONS AND RECOMMENDATIONS	7
TABI	LES	

TABLE 1	SUMMARY OF STABILIZED GROUNDWATER SCREENING
	RESULTS

- TABLE 2SUMMARY OF DETECTED APPENDIX A GROUNDWATER
ANALYTICAL RESULTS
- TABLE 3LOWER 95% CONFIDENCE LIMIT FOR COMPARING THE MEAN
OF THE SAMPLE RESULT TO THE STANDARD

FIGURES

FIGURE 1	LOCUS PLAN
FIGURE 2	GROUNDWATER CONTOUR PLAN - FIRST QUARTER 2015

APPENDICES

APPENDIX A LIMITATIONSAPPENDIX B LABORATORY CERTIFICATES OF ANALYSISAPPENDIX C TIME SERIES PLOTS

J:\ENV\32220.27.EMB\Report\March 2015\Text\Draft TOC .docx

GZA GeoEnvironmental, Inc.

Engineers and Scientists

June 10, 2015 File No. 32220.27

530 Broadway Providence Rhode Island 02909 401-421-4140 Fax: 401-751-8613 http://www.gza.com Mr. Mark Dennen Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street, 3rd Floor Providence, Rhode Island 02908

Re: First Quarter 2015 Environmental Monitoring Report Former Jamestown Landfill Jamestown, Rhode Island

Dear Mr. Dennen:

On behalf of our client, the Town of Jamestown, GZA GeoEnvironmental, Inc. (GZA) is pleased to submit this *Environmental Monitoring Report*. The report presents the results of the First Quarter 2015 post-closure environmental monitoring round conducted at the former Jamestown Landfill (the Site) located on North Main Road in Jamestown, Rhode Island. A summary of our findings and conclusions from this monitoring round are presented on pages 8 and 9 of the report.

Groundwater and methane monitoring were conducted in accordance with the applicable requirements of RIDEM's January 1997 *Solid Waste Regulation No. 2* (Solid Waste Landfills) and the Site's *Revised Environmental Monitoring Plan* (EMP) dated October 4, 2004, as amended through November 2005. Additionally, as requested by the Town, GZA included monitoring locations GZ-1, GZ-8 and GZ-9 in the quarterly sampling and analytical program.

We trust that this report fulfills your present needs. Please feel free to call Erik Beloff or Ed Summerly at (401) 421-4140 if you have any questions or comments.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Erik M. Beloff Assistant Project Manager

Edward A. Summerly, P.G. Principal

John P. Hartley Consultant/Reviewer

EAS:lal

cc: Mr. Michael Gray, Town of Jamestown (1 copy and PDF)

J:\ENV\32220.27.EMB\Report\March 2015\Text\32200-27 Final Cover Letter.docx

1.00 INTRODUCTION

This report describes the first quarterly round of post-closure groundwater and perimeter landfill gas monitoring for 2015 performed at the former Jamestown Landfill (Site) located off North Main Road in Jamestown, Rhode Island (see Figure 1 - *Locus Plan*). GZA GeoEnvironmental, Inc. (GZA) performed this monitoring on behalf of the Town of Jamestown for their submission to the Rhode Island Department of Environmental Management (RIDEM) to address applicable requirements of RIDEM's *Solid Waste Regulation No. 2* (Solid Waste Landfills) dated January 1997 and the Site's *Revised Environmental Monitoring Plan* dated October 4, 2004, as amended on November 29, 2005.

This round included the sampling of monitoring well GZ-1 as requested by the Town at a public workshop held on October 27, 2008. It also contains the laboratory results from samples collected from the two more recently installed monitoring wells; GZ-8 and GZ-9.

A summary of our findings and conclusions from this monitoring round are presented on pages 7 and 8 of this report. This report is subject to the limitations contained in Appendix A.

The purpose of this monitoring was to:

- Continue the assessment of groundwater quality at and in the vicinity of the Site including the detection and evaluation of contaminants (if any) derived from former waste disposal operations; and
- Evaluate the potential for off-Site migration of methane due to waste decomposition.

This report includes: well-specific field measurements; a summary of sampling and analytical results; methane monitoring results; a statistical evaluation of the data; and conclusions and recommendations.

2.00 GROUNDWATER SAMPLING AND LANDFILL GAS SURVEY

GZA personnel were onsite to collect groundwater samples from the 11 program wells and perform the perimeter landfill gas survey (LGS) on March 19 and 20, 2015. The following paragraphs briefly describe our field procedures.

2.10 GROUNDWATER SAMPLING

On March 19, 2015, groundwater samples were collected from 5 of the 11 groundwater monitoring wells. The wells included GZ-2, GZ-3, GZ-4, GZ-7S and GZ-7D. On March 20, 2015, samples were collected from GZ-1, GZ-5, GZ-6, GZ-8, GZ-9 and POT-1/PWSW. Groundwater well locations are shown on Figure 2, *Groundwater Contour Plan – March 2015*. Depth to groundwater was measured and recorded at all 11 program wells prior to purging and sampling; including those that were retained in the EMP for groundwater elevation contouring purposes. Table 1 summarizes the depth to groundwater, elevation data and field-screening results.

Groundwater sampling was conducted in general accordance with the United States Environmental Protection Agency's (USEPA) July 30, 1996 *Low Stress (low flow) Purging and Sampling Procedure* (Low Flow SOP), revised January 19, 2010. In previous rounds, the sample from GZ-9 was turbid, which resulted, in our opinion, in elevated inorganic concentrations in the sample. To address this, monitoring well GZ-9 was purged for an extended period of time in an effort to remove suspended solids.

The samples were screened and/or analyzed for five field-screening parameters (pH, specific conductance, temperature, dissolved oxygen and turbidity), 15 metals employing EPA Method 6020A and 47 volatile organic compounds (VOCs) by EPA Method 8260C specified for detection monitoring in Appendix A of RIDEM's *Solid Waste Regulation No. 2*. The groundwater sample from the well on Lot 47, designated POT-1/PWSW was analyzed for VOCs by EPA Method 524.2, for nitrate by Method 353.2 and total coliform bacteria by Method 9221B as required by the Site-wide EMP referenced above.

Samples were collected in preserved containers supplied by the laboratory and placed on ice for transport under chain-of-custody (attached in Appendix B) to Spectrum Analytical Inc. (formerly Mitkem) in North Kingstown, Rhode Island; a RI Department of Health certified laboratory, for testing (Certification # LAI00301).

2.20 PERIMETER LANDFILL GAS SURVEY

GZA conducted the perimeter landfill gas survey on March 20, 2015. The monitoring was conducted to evaluate the potential for migration of landfill gas (specifically methane) to off-Site receptors. The methane monitoring was conducted in general accordance with GZA's standard operating procedure (SOP) *4.5 Landfill Gas Monitoring* and the EPA's guidance document number EPA 600/R-05/123A dated September 2005 titled *Guidance for Evaluating Landfill Gas Emissions From Closed or Abandoned facilities.*"

The monitoring was performed at seven of the 14 permanent landfill gas monitoring locations (see Figure 2). As previously noted in the September 2013 *Monitoring Report*, six LFG monitoring probes (SG-3, SG-6, SG-8, SG-10, SG-12 and SG-13) were removed/destroyed during landfill closure activities and installation of the engineered cap. In addition, LFG monitoring probe SG-2 was found to be destroyed during the December 2013 monitoring round. New probes will be installed to replace each of these seven destroyed locations. The seven existing probes will also be replaced at this time as part of routine maintenance activities.

Soil gas was extracted and screened using a LANDTEC GEM 2000[®] infra-red gas analyzer. The instrument was field-calibrated prior to its use with a mixture of methane (100 parts per million [ppm]) in air. The following table presents the results of the landfill gas screening for this quarter.

<u>Location</u>	<u>% Methane</u> (CH4)	<u>% LEL</u>	<u>% Oxygen</u> (O ₂)	<u>% Carbon Dioxide</u> (CO ₂)
SG-1	<0.1	< 0.1	21.5	0.0
SG-2	-	-	-	-
SG-3	-	-	-	-
SG-4	<0.1	< 0.1	20.8	0.1
SG-6	-	-	-	-
SG-7	0.0	< 0.1	20.5	0.3
SG-8	-	-	-	-
SG-9	<0.1	< 0.1	20.7	0.2
SG-10	-	-	-	-
SG-11	<0.1	< 0.1	21.5	0.1
SG-12	-	-	-	-
SG-13	-	-	-	-
SG-14	<0.1	< 0.1	16.2	4.3
SG-15	<0.1	< 0.1	21.0	0.1

PERIMETER LANDFILL GAS SCREENING - MARCH 20, 2015

Note: 1. "-"indicates" not tested.

2. SG-5 was replaced with SG-15.

Methane was not detected in any of the seven soil gas samples screened. RIDEM regulations require that all solid waste management facilities demonstrate that methane levels do not exceed 25% of the Lower Explosive Limits (LEL) at the facility's property boundaries. These monitoring results were compliant with this requirement.

3.00 GROUNDWATER SCREENING AND ANALYTICAL RESULTS

The results of field-screening and groundwater monitoring for the last four quarterly rounds are summarized in Tables 1 and 2. The laboratory Certificates of Analysis are provided in Appendix B. A discussion of these testing results follows.

3.10 FIELD SCREENING PARAMETERS

During this sampling round, dissolved oxygen (DO), specific conductance, turbidity and temperature were screened in the field prior to sample collection at each monitoring location (see Table 1). These field parameters serve as indirect measurements of water quality and are used to assess well stabilization under the low-flow purging and sampling protocol. The screening levels observed during this monitoring round are fairly typical for New England groundwaters, but suggest that the landfill has had some impact on groundwater quality.

3.20 INORGANIC ANALYTES

As shown in Table 2, eight of the 15 target inorganic analytes were detected in the groundwater samples collected during this sampling round. There were no exceedances of the *National Primary Drinking Water Regulation* Maximum Contaminant Levels (MCLs) for inorganics in samples collected during this round.

The USEPA has not established *National Primary Drinking Water Regulations* for all of the detected metals. Because of this, we have also listed USEPA's Regional Screening Levels (RSLs) for the detected parameters, from the four most recent monitoring rounds, as a point of comparison. As shown on Table 2^3 , the concentrations of cobalt in samples from monitoring wells GZ-2 (220 µg/L), GZ-5 (59 µg/L) and GZ-7S (35 µg/L) exceeded the RSL (6.0 µg/L).

Inorganic elements are naturally occurring; therefore, variability in concentrations across the Site are to some degree the result of natural variations in soil and bedrock characteristics, and the amount of suspended particles within individual samples. As noted above, low-flow/low-stress sampling methods were employed during this and all prior GZA sampling rounds to reduce the potential impact of suspended particles on sample results. Care was taken during the purging and sampling of each location to minimize turbidity levels and achieve stabilized readings below 5 nephelometric turbidity units (NTUs) prior to sample collection. Turbidity in all groundwater samples collected during this round, other than the sample from GZ-9 (12 NTUs), stabilized below the recommended 5 NTU level before sampling. Additional purging of GZ-9 had a noticeable beneficial effect on reducing turbidity levels and consequently inorganic analytes.

3.30 VOLATILE ORGANIC COMPOUNDS

As stated above, VOCs were analyzed by EPA Method 8260C for samples collected from monitoring wells, and by EPA Method 524.2 for the sample collected from POT-1/PWSW. The VOC sample results for the first round of 2015 show five individual VOCs detected in samples collected from wells GZ-2, GZ-7S, GZ-8 and POT-1/PWSW. Sample concentrations were as follows:

Detected VOCs	RIDEM GA Groundwater Objective ^Δ /Federal MCLs ^B (μg/l)	Location	Result (µg/l)
1,1-Dichloroethane	None/None	POT-1	0.22 J
1,4-Dichlorobenzene	75/75	GZ-8	1.2 J
Chlorobenzene	100/100	GZ-2 GZ-7S GZ-8	5.4 1.4 J 4.2 J
Dichlorodifluromethane	None/None	POT-1	1.09
Tetrahrydrofuran	None/None	POT-1	0.87

Notes:

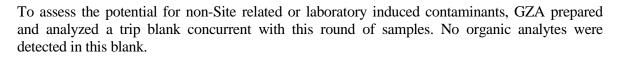
A. Groundwater classified GA are those groundwater resources which the Director (RIDEM) has designated to be suitable for public or private drinking water use without treatment.

B. MCL indicates the May 2009 National Primary Water Regulations maximum contaminant level.

C. "J" indicates that the reported concentration was below the method quantitation limits (reporting limits) and is therefore an estimated value.

The data demonstrate that there were no exceedances of state or federal groundwater quality standards for VOCs during the first quarter sampling round of 2015.

For more detailed information on specific detections and their monitoring history, refer to Table 2, the laboratory certificates of analysis in Appendix B, and/or the time series plots in Appendix C.



3.40 WATER QUALITY PARAMETERS

The samples collected from POT-1/PWSW, were analyzed by EPA Method 353.2 and Standard Method SM9221B for nitrate/nitrite as (N) and total coliform bacteria, respectively.

Neither nitrate/nitrite nor total coliform bacteria were detected above their reporting limit (RL).

3.50 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

Method blanks were prepared by the laboratory to provide quality assurance/quality control for the target compounds during analysis. All method blanks during this monitoring round were within the acceptable criteria. The laboratory also prepared laboratory control samples (LCS), laboratory control sample duplicates (LCSD), and evaluated surrogate recoveries during this sampling round for both organic and inorganic parameters. All LCS and LCSD recoveries were within the QC limits for all samples with the exception of 1,1-dichloroethene, hexachlorobutadiene, methylene chloride and vinyl chloride in the sample from POT-1. 1,1-dichloroethene recovery was below the criteria of 80-120%, hexachlorobutadiene was above the recovery criteria of 80-120%, methylene chloride was below the criteria of 80-120% and vinyl chloride was below the criteria of 80-120% in the results for POT-1. The test procedure allows for several compounds to be outside the QC limits for the LCS. None of these parameters were detected above the RL in any of the samples. As such, the data were all of suitable quality for the intended use.

4.00 COMPARISON OF CURRENT RESULTS WITH PREVIOUS RESULTS

Table 2 presents data for detected analytes from the four most recent monitoring rounds (June 2014 through March 2015). This table also presents the applicable regulatory groundwater quality standards and EPA's RSLs for parameters where applicable water quality standards have not been established.

As shown in Table 2, eight of the 15 target inorganic parameters were detected in groundwater samples collected during this round. All eight of the detected analytes were also found in groundwater samples collected during the three prior sampling rounds. The eight parameters detected in samples collected during this round (barium, chromium, cobalt, copper, lead, nickel, silver and zinc) are naturally-occurring and most are likely being detected frequently due to the very low detection and reporting limits provided by the analytical method now being employed; EPA Method 6020A.

All five organic parameters detected in samples collected during this round (1,1dichloroethane, 1,4-dichlorobenzene, chlorobenzene, dichlorodifluoromethane and tetrahydrofuran) were observed in one or more of the prior three rounds. Benzene, which was detected for the first time since monitoring began in the sample from GZ-7D last quarter, was not detected during the March 2015 round. Tetrahydrofuran was detected in the sample from POT-1/PWSW for the third consecutive time since monitoring began.

Time series plots were developed for each parameter detected during any of the four most recent monitoring rounds. These plots are provided in Appendix C.

4.10 INORGANIC ANALYTES

The following key observations were noted from our review of inorganic analytes detected during the first round of 2015 as compared to historical results.

- There were no exceedances of any MCLs during this sampling round.
- Lead was detected in the samples collected from wells GZ-9 and POT-1 during this round at concentrations below the MCL.
- Silver was detected in the sample from GZ-4 for the first time onsite since the June 2014 sampling round.
- Cobalt, as described above, was detected in samples from nine of the 11 groundwater monitoring wells; all within historic concentration ranges. There were exceedances of the cobalt RSL in samples from three of the 11 monitoring wells. Note, the RSLs are not regulatory limits, but rather are provided as a point of reference for evaluation of detected parameters for which MCLs have not been established.

Although there have been fluctuations, refer to the trend analysis provided in Appendix C, inorganic constituent concentrations have remained relatively constant during the quarterly environmental monitoring program. We believe that much of the variation in metals concentrations are related to seasonal fluctuations in groundwater levels that impact the turbidity and suspended solids levels of samples as shown on Table 1.

4.20 VOLATILE ORGANIC COMPOUNDS

The following observations were noted from our review of VOCs detected in samples collected during the first round of 2015 as compared to historical results.

- There were no MCL exceedances during this round.
- Chlorobenzene has been consistently detected at low concentrations in groundwater samples collected from wells GZ-2 and G-8. The current observed chlorobenzene concentrations in the samples from these locations are within historic ranges.
- Dichlorodifluoromethane was detected at a low concentration in the sample from POT-1/PWSW during this round which is typical of most prior rounds.
- Tetrahydrofuran was detected for the third consecutive round from POT-1/PWSW. Tetrahydrofuran is a common constituent of PVC plastic glue, and since well POT-1/PWSW is located upgradient of the landfill, its detection is likely related to a nearby release.

As was the case with inorganics, VOC concentrations have remained relatively constant during the quarterly environmental monitoring program.

5.00 STATISTICAL DATA EVALUATION

As stated in Section 5.10 of the EMP, a statistical analysis is required for all detected constituents (in groundwater) that are observed at concentrations above the EPA's MCLs. A review of the first quarter 2015 results indicates that no parameters exceeded their action level (*i.e.*, TT or MCL) during the March 2015 monitoring round; therefore no statistical analysis was required.

Time series plots were generated for detected parameters from this and the three previous sampling rounds. These plots were evaluated for trends and outliers. Sen's Test for trends was performed to evaluate statistically significant trends in the data with respect to time. Seven VOCs and 11 inorganic analytes were evaluated resulting in 71 time series plots that are presented in Appendix C.

Thirteen statistically significant trends in contaminant concentrations were identified by the Sen's Tests. They all represent decreasing concentration trends. These trends were identified for:

- barium (in the sample from GZ-4, GZ-7D and GZ-9);
- cobalt (in the samples from GZ-1, GZ-6, GZ-7D and POT-1);
- nickel (in the samples from GZ-2 and GZ-5);
- lead (in the sample from GZ-9);
- zinc (in the samples from GZ-6 and GZ-7S); and
- 1, 1-dichloroethane (in the sample from GZ-2).

Time series plots were also visually evaluated for seasonality and outliers. There do not appear to be significant seasonal fluctuations in concentrations for any of the detected analytes. No outliers were observed in the samples collected during the March 2015 monitoring round.

6.00 CONCLUSIONS AND RECOMMENDATIONS

Ten groundwater monitoring wells and the Lot-47 well (POT-1/PWSW) were field-screened and sampled. The samples were analyzed for 15 inorganics and 47 VOCs listed in RIDEM's *Solid Waste Regulations*. Additionally, nitrate/nitrite (as N) and total coliform bacteria analysis was performed on the samples collected from POT-1/PWSW.

The following conclusions were developed based on the results obtained from this and previous sampling rounds.

- Five organic and eight inorganic parameters were detected in the groundwater samples collected during this round of groundwater monitoring. There were no exceedances of *National Primary Drinking Water Regulations Maximum Containment Limits (i.e.*, MCLs or TTs) for any parameters during this sampling round.
- Lead was detected in the samples from 2 of the 11 monitoring wells this round. The detections were all well below the Action Level of 15 µg/L.

- Time series plots and trend tests identified 13 statistically significant decreasing trends and no statistically significant increasing trends in groundwater contaminant concentrations.
- Eight target parameters were detected in the sample collected from POT-1/PWSW during this sampling round. All detected parameters were below their respective MCLs/TTs and/or health-based screening criteria (*i.e.*, RSLs), where available. Note that the drinking water analytical method was used for the analysis of VOCs for the samples collected from this well.
- Seven of the 14 landfill soil gas monitoring locations were screened for methane during this round. As stated in the prior report, seven monitoring locations had been removed/destroyed during on-going construction activities. Methane was not detected above the instrument detection limit of 0.1% in any of the seven screened perimeter soil gas monitoring locations. Methane concentrations were all below RIDEM's regulatory limit (*i.e.*, <25% of the LEL at the property boundaries). Methane has never been detected above the instrument detection limit at the majority of screening locations around the perimeter of the Site.
- Based on groundwater analytical results for samples collected during this round of monitoring, it does not appear that recent construction activities performed at the Site have had any adverse effects on groundwater quality.
- Based on the findings presented herein, assessment monitoring is not required at this time.

The next round of groundwater and soil vapor monitoring will be conducted in June of 2015.

J:\ENV\32220.27.EMB\REPORT\MARCH 2015\TEXT\32220-27 FINAL TEXT.DOCX

TABLES

TABLE 1

SUMMARY OF STABILIZED GROUNDWATER SCREENING RESULTS JUNE 2014 TO MARCH 2015

Location ID:		(GZ-1 (Up-gra	dient)		GZ-2 (Dow	vn-gradient)		
Sampling Date:	UNIT	6/25/2014	9/16/2014	12/22/2014	3/20/2015	6/23/2014	9/16/2014	12/22/2014	3/19/2015
Temperature	°C	13.7	12.8	10.7	7.8	12.8	13.9	10.8	10.4
pН	SU	5.6	5.5	5.7	5.5	6.3	6.1	5.7	6.3
Conductance	mS/cm	0.068	0.075	0.081	0.084	0.602	0.378	0.091	0.517
Dissolved Oxygen	mg/l	2.8	6.1	7.6	7.1	0.4	0.3	5.4	0.3
Turbidity	NTU	5	5	4	4	5	3	4	5
Depth to Water	FT	14.5	24.1	16.1	6.5	9.2	13.3	8.7	5.7
Location ID:		G	Z-3 (Down-gi	radient)			GZ-4 (Cro	ss-gradient)	
Sampling Date:	UNIT	6/23/2014	9/16/2014	12/22/2014	3/19/2015	6/23/2014	9/16/2014	12/22/2014	3/19/2015
Temperature	°C	10.7	12.9	12.6	9.2	12.3	13.6	11	8.8
рН	SU	5.4	5.3	5.5	5.3	5.5	5.1	5.5	5.4
Conductance	mS/cm	0.136	0.083	0.129	0.170	0.097	0.06	0.094	0.104
Dissolved Oxygen	mg/l	6.8	5.8	5.2	6.3	2.3	5.9	6.3	6.0
Turbidity	NTU	5	3	2	2	5	5	4	2
Depth to Water	FT	9.8	14.2	9.6	5.9	9.7	15.6	10.3	4.2
Location ID:		G	Z-5 (Cross-gi	radient)			GZ-6 (Up	o-gradient)	
Sampling Date:	UNIT	6/23/2014	9/16/2014	12/22/2014	3/20/2015	6/23/2014	9/16/2014	12/22/2014	3/20/2015
Temperature	°C	15.2	15.3	13	10.7	16.2	12.5	10.6	9.7
рН	SU	6.6	5.9	5.8	6.2	5.8	5.3	5.6	5.5
Conductance	mS/cm	0.131	0.099	0.089	0.190	0.075	0.080	0.072	0.075
Dissolved Oxygen	mg/l	1.3	5.9	2.5	0.3	1.5	7.5	8.2	6.6
Turbidity	NTU	3	4	5	2.0	5	5	4	2
Depth to Water	FT	22.1	32.7	30.7	15.1	18.1	27.5	23.4	12.4

Former Jamestown Landfill - Jamestown, Rhode Island

Notes:

1. Temperature, pH, Conductance and Dissolved Oxygen were measured in the field using a YSI Pro multimeter. Turbidity was measured in the field using a Lamotte 2000 Turbidity Meter.

2. Turbidity below 5 NTUs could not be achieved after 2 hours of well purging at a low flow rate (<0.4 L/min).

3. Depht to water not recorded due to damaged well.

TABLE 1

SUMMARY OF STABILIZED GROUNDWATER SCREENING RESULTS JUNE 2014 TO MARCH 2015

Location ID:		GZ	-7D (Down-g	gradient)		GZ-7S (Dov	wn-gradient)		
Sampling Date:	UNIT	6/23/2014	9/16/2014	12/22/2014	3/19/2015	6/23/2014	9/16/2014	12/22/2014	3/19/2015
Temperature	°C	14	12.2	12.4	9.9	15.4	12.4	11.8	10.6
pН	SU	6.4	6.2	6.2	6.4	6.6	6.1	6.2	6.3
Conductance	mS/cm	0.293	0.438	0.278	0.325	0.680	0.555	0.624	0.634
Dissolved oxygen	mg/l	1.2	1.6	0.8	2.2	0.6	2.5	0.9	1.8
Turbidity	NTU	4	4	3	3	4	4	3	3
Depth to water	FT	24.4	28.3	24.0	21.0	23.4	27.7	23.0	18.7
Location ID:			POT-1 (Lot	: 47)			GZ-8 (Dow	vn-gradient)	
Sampling Date:	UNIT	6/25/2014	9/16/2014	12/22/2014	3/20/2015	6/25/2014	9/16/2014	12/22/2014	3/20/2015
Temperature	°C	12.0	12.4	11.4	10.1	13.9	12.5	12.3	11.6
pН	SU	7.2	6.3	6.9	7.3	5.9	5.9	6.1	6.2
Conductance	mS/cm	0.209	0.189	0.225	0.233	0.155	0.502	0.598	0.576
Dissolved oxygen	mg/l	0.5	3.8	0.2	0.1	0.3	0.4	0.4	1.0
Turbidity	NTU	5	5	2	5	4	5	3	3
Depth to water	FT	16.7	25.4	20.6	11.5	32.6	37.8	31.4	25.6
Location ID:		G	Z-9 (Down-gi	radient)					
Sampling Date:	UNIT	6/25/2014	9/16/2014	12/22/2014	3/20/2015				
Temperature	°C	13.6	13.5	11.1	8.7				
рН	SU	6.1	6.4	6.4	6.6				
Conductance	mS/cm	0.144	0.097	0.116	0.117				
Dissolved oxygen	mg/l	2.6	1.1	1.6	1.6				
Turbidity	NTU	21 ⁻²	240^{-2}	10 ⁻²	12^{2}				
Depth to water	FT	19.5	24.6	20.2	NR				

Former Jamestown Landfill - Jamestown, Rhode Island

Notes:

1. Temperature, pH, Conductance and Dissolved Oxygen were measured in the field using a YSI Pro multimeter. Turbidity was measured in the field using a Lamotte 2000 Turbidity meter

- 2. Turbidity below 5 NTUs could not be achieved after 2 hours of well purging at a low flow rate (<0.4 L/min).
- 3. EA-3 was retianed to aid in groundwater contouring. Depth to water during each of the last four quarters was 27.9, 7.5, 16.1 and 16.6 feet.

TABLE 2 SUMMARY OF DETECTED APPENDIX A GROUNDWATER ANALYTICAL RESULTS JUNE 2014 THROUGH MARCH 2015

Former Jamestown Landfill - Jamestown, Rhode Island

	Method		USEPA ³		GZ-1 (Up	-gradient)			GZ-2 (Dow	n-gradient))		GZ-3 (Dow	n-gradient))		GZ-4 (Cro	ss-gradient)	
Parameters	Detection Limit	MCL*	Regional Screening Level	6/25/2014	9/16/2014	12/22/2014	3/20/2015	6/23/2014	9/16/2014	12/22/2014	3/19/2015	6/23/2014	9/16/2014	12/22/2014	3/19/2015	6/23/2014	9/16/2014	12/22/2014	3/19/2015
Volatile Organics: (µg/l)																			
Benzene	5	5	0.45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	100	78	ND	ND	ND	ND	6.7	7.5	5.7	5.4	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	NONE	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	NONE	2.7	ND	ND	ND	ND	0.62 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	75	0.48	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cis-1,2-Dichloroethene	5	70	36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	0.5	None	0.17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	5	0.44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahyrdrofuran	0.64	None	3,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Water Quality Parameters:																			
Total Coliform (cfu/100ml)	20	<5% 4	NONE	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Nitrate/Nitrite as N (mg/l)	0.25	10/1 6	32,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Total Metals: (µg/l)																			
Antimony	2	6	7.8	ND	5.0	9.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	1	10	0.052	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	10	2,000	3,800	ND	ND	ND	ND	48	51	48	43	63	16	10	36	ND	ND	ND	13
Beryllium	1	4	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	1	5	9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND
Chromium	2	100	NONE	ND	ND	ND	ND	ND	ND	ND	ND	24	ND	ND	ND	ND	ND	ND	2.5
Cobalt	1	NONE	6	5.0	13	8.5	2.6	220	260	230	220	6	ND	ND	ND	ND	ND	ND	ND
Copper	2	$1,300^{7}$	800	ND	7.5	6.5	ND	ND	ND	ND	ND	110	ND	ND	ND	ND	ND	ND	ND
Lead	1	15 ⁷	NONE	ND	ND	2.0 B	ND	ND	ND	ND	ND	6.1 B	ND	ND	ND	ND	5.3 B	ND	ND
Selenium	5	50	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	1	NONE	94	ND	ND	ND	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND	1.1
Nickel	1	NONE	390	18	34 B	26	17	42	45 B	39	39	17	3.2 B	3.1	5	8.3	9.2 B	9.2	13
Thallium	1	2	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	5	NONE	86	ND	ND	ND	ND	ND	ND	ND	ND	32	ND	ND	ND	ND	ND	ND	ND
Zinc	5	NONE	6,000	15	34	24	12	6.6	7.6	6.6	9	100	9.4	5.1	15	11	11	15	15

Notes:

(1) * Results are compared to USEPA's National Primary Drinking Water Regulation maximum contaminant levels (MCLs) updated May 2009

as required by RIDEM's Solid Waste Regulations.

(2) ND indicates the parameter was non-detected.

(3) USEPA Regional Screening Levels (RSL) promulgated November 2010 and revised in April 2012, May 2014 and January 2015. Note, the RBC for cobalt was previously 11 µg/l.

(4) If detected in two consecutive rounds, must sample for fecal coliform and E Coli bacteria.

(5) NS indicates parameter not sampled.

(6) Groundwater sample from POT-1/PWSW was analyzed employing drinking water methods (524.2).

(7) Value is a Treatment Technique Action Level (TT).

(8) "J" indicates that the reported concentration is below the method quantitation limits (reporting limits) and is therefore an estimated value.

(9) Yellow highlighted values exceed either MCL, TT Action Level or RSL.

(10) "B" indicates that the parameter was detected in a blank sample.

(11) Turbidity was above 5 NTU at this location at the time of sample collection.

(12) Appendix A refers to RIDEM's Appendix A list of hazardous inorganic and organic constituents from solid waste regulation No. 2 Solid Waste Landfills.

TABLE 2 SUMMARY OF DETECTED APPENDIX A GROUNDWATER ANALYTICAL RESULTS JUNE 2014 THROUGH MARCH 2015

Former Jamestown Landfill - Jamestown, Rhode Island

	Method		USEPA ³		GZ-5 (Cros	s-gradient)			GZ-6 (Up	-gradient)		(GZ-7S (Dov	vn-gradient))		GZ-7D (Do	wn-gradient)
Parameters	Detection Limit	MCL*	Regional Screening Level	6/23/2014	9/16/2014	12/22/2014	3/20/2015	6/23/2014	9/16/2014	12/22/2014	3/20/2015	6/23/2014	9/16/2014	12/22/2014	3/19/2015	6/23/2014	9/16/2014	12/22/2014	3/19/2015
Volatile Organics: (µg/l)																			
Benzene	5	5	0.45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.94 J	ND
Chlorobenzene	5	100	78	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.8 J	2.1 J	1.4 J	ND	ND	ND	ND
Dichlorodifluoromethane	5	NONE	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	NONE	2.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	75	0.48	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cis-1,2-Dichloroethene	5	70	36	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.81 J	0.98 J	ND	ND	ND	ND	ND
Naphthalene	0.5	None	0.17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	5	0.44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahyrdrofuran	0.64	None	3,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Water Quality Parameters:																			
Total Coliform (cfu/100ml)	20	<5% 4	NONE	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Nitrate/Nitrite as N (mg/l)	0.25	10/1 6	32,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Total Metals: (µg/l)																			
Antimony	2	6	7.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.5	ND	ND
Arsenic	1	10	0.052	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	10	2,000	3,800	ND	ND	ND	ND	ND	ND	ND	ND	18	19	24	23	ND	16	10	ND
Beryllium	1	4	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	1	5	9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium	2	100	NONE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cobalt	1	NONE	6	26	22	34	59	5.1	4.1	3.7	3.2	4.1	27	27	35	3.2	4.4	2.8	2.5
Copper	2	1,3007	800	ND	ND	ND	ND	18	12	9.9	15	ND	ND	ND	ND	ND	ND	ND	ND
Lead	1	157	NONE	ND	1.6 B	ND	ND	ND	ND	ND	ND	1.5 B	ND	ND	ND	ND	4.6 B	ND	ND
Selenium	5	50	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	1	NONE	94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	1	NONE	390	3	3.8 B	6.5	4.9	19	17 B	17	16	90	61 B	61	76	7.1	26 B	10	7.7
Thallium	1	2	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	5	NONE	86	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	5	NONE	6,000	5.9	ND	6.2	ND	19	18	15	13	25	14	24	15	ND	14	ND	ND

Notes:

(1) * Results are compared to USEPA's National Drinking Water Regulations maximum contaminant levels (MCLs) updated May 2009

as required by RIDEM's Solid Waste Regulations.

(2) ND indicates the parameter was non-detected.

(3) USEPA Regional Screening Levels (RSL) promulgated November 2010 and revised in April 2012. Note, the RBC for cobalt was previously 11 µg/l.

(4) If detected in two consecutive rounds, must sample for fecal coliform and E Coli bacteria.

(5) NS indicates parameter not sampled.

(6) Groundwater sample from POT-1/PWSW was analyzed employing drinking water methods (524.2).

(7) Value is a Treatment Technique Action Level (TT).

(8) "J" indicates that the reported concentration is below the method quantitation limits (reporting limits) and is therefore an estimated value.

(9) Yellow highlighted values exceed either MCL, TT Action Level or RSL.

(10) "B" indicates that the parameter was detected in a blank sample.

(11) Turbidity was above 5 NTU at this location at the time of sample collection.

(12) Appendix A refers to RIDEM's Appendix A list of hazardous inorganic and organic constituents from solid waste regulation No. 2 Solid Waste Landfills.

TABLE 2 SUMMARY OF DETECTED APPENDIX A GROUNDWATER ANALYTICAL RESULTS JUNE 2014 THROUGH MARCH 2015

Former Jamestown Landfill - Jamestown, Rhode Island

	Method		USEPA 3		GZ-8 (Dow	n-gradient)			GZ-9 (Dow	n-gradient)			POT-1 (Lot-47) ⁽⁶⁾	
Parameters	Detection Limit	MCL*	Regional Screening Level	6/25/2014	9/16/2014	12/22/2014	3/20/2015	6/25/2014	9/16/2014	12/22/2014	3/20/2015	6/25/2014	9/16/2014	12/22/2014	3/20/2015
Volatile Organics: (µg/l)															
Benzene	5	5	0.45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	100	78	10	12	11	4.2 J	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	NONE	200	ND	ND	ND	ND	ND	ND	ND	ND	0.99	ND	1.32	1.09
1,1-Dichloroethane	5	NONE	2.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22
1,4-Dichlorobenzene	5	75	0.48	2.1 J	3.6 J	2.2 J	1.2 J	ND	ND	ND	ND	ND	ND	ND	ND
Cis-1,2-Dichloroethene	5	70	36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	0.5	None	0.17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	5	0.44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahyrdrofuran	0.64	None	3,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.85	1.36	0.87
Water Quality Parameters:															
Total Coliform (cfu/100ml)	20	<5% 4	NONE	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND
Nitrate/Nitrite as N (mg/l)	0.25	10/1 6	32,000	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND
Total Metals: (µg/l)			, ,												
Antimony	2	6	7.8	ND	ND	ND	ND	ND	ND	2.1	ND	ND	ND	ND	ND
Arsenic	1	10	0.052	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	10	2,000	3,800	61	69	68	63	20	41	14	16	ND	ND	ND	ND
Beryllium	1	4	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	1	5	9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium	2	100	NONE	ND	ND	ND	ND	ND	5.8	ND	ND	ND	ND	ND	ND
Cobalt	1	NONE	6	2.5	3.0	2.7	2.6	5.7	8.8	5.1	5.8	1.0	2.0	2.3	1.4
Copper	2	1.300^{7}	800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	39	43
Lead	1	157	NONE	ND	ND	ND	ND	3.6 B	6.5 B	1.7 B	1.4	ND	ND	2.5 B	2
Selenium	5	50	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	1	NONE	94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	1	NONE	390	28	33 B	31	29	10	16 B	7.7	9.8	2.5	8.1 B	5.5	3.4
Thallium	1	2	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	5	NONE	86	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	5	NONE	6.000	ND	5.6	ND	ND	16	30	9.5	10	5.1	6.1	28	27
Line	5	NONE	0,000	nD	5.0	nD	nD	10	50	<i></i>	10	5.1	0.1	40	<i>21</i>

Notes:

(1) * Results are compared to USEPA's National Primary Drinking Water Regulations maximum contaminant levels (MCLs) updated May 2009

as required by RIDEM's Solid Waste Regulations.

(2) ND indicates the parameter was non-detected.

(3) USEPA Regional Screening Levels (RSL) promulgated November 2010 and revised in April 2012. Note, the RBC for cobalt was previously 11 µg/l.

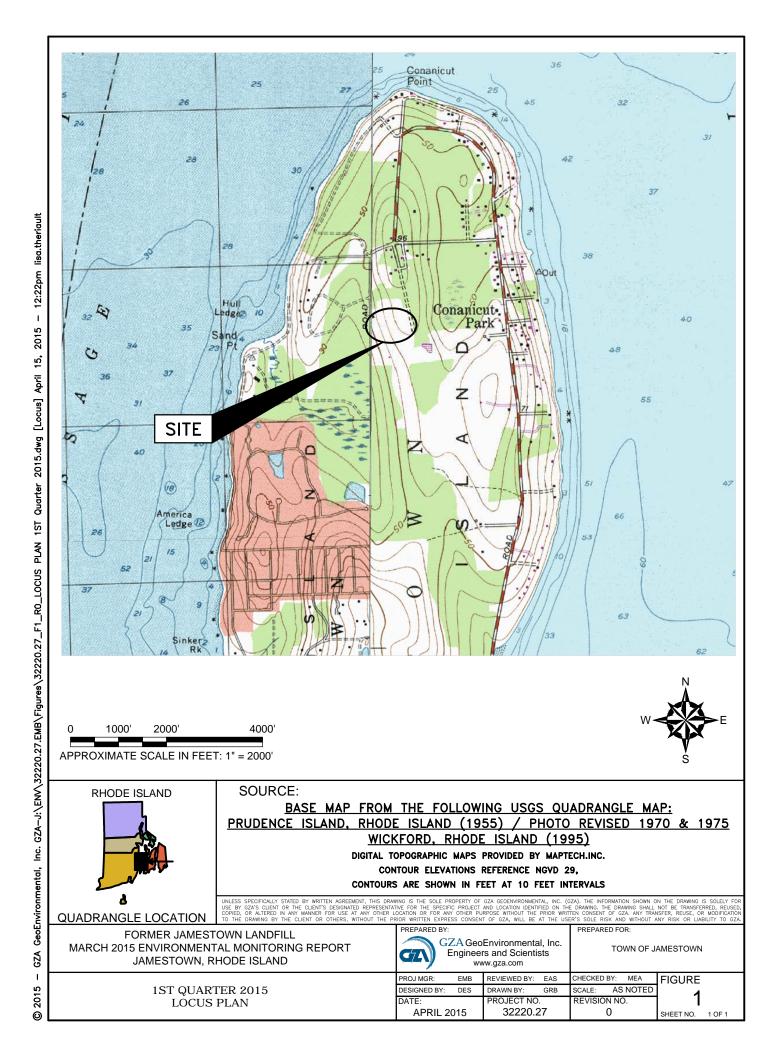
(4) If detected in two consecutive rounds, must sample for fecal coliform and E Coli bacteria.

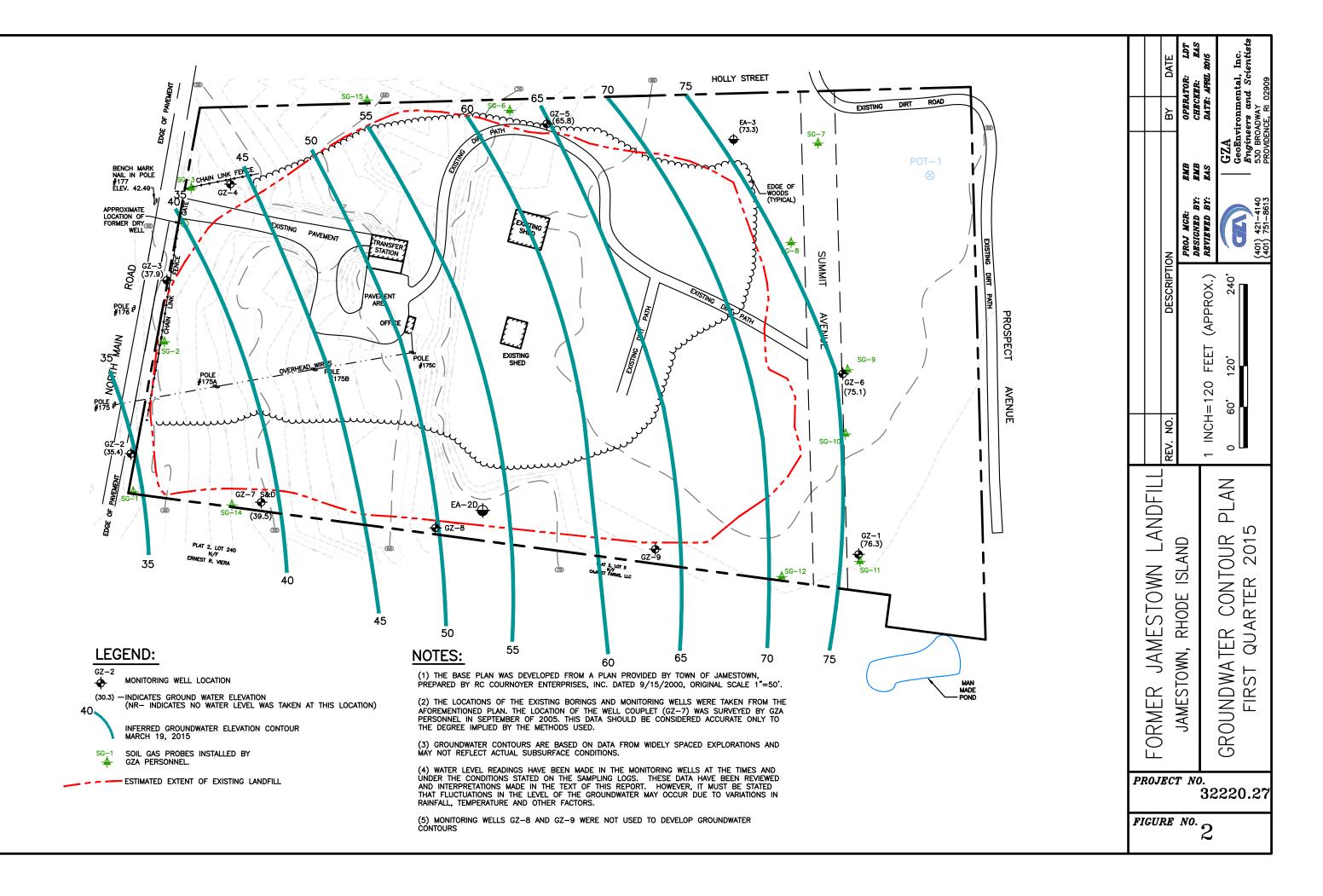
(5) NS indicates parameter not sampled.

(6) Groundwater sample from POT-1/PWSW was analyzed employing drinking water methods (524.2).

(7) Value is a Treatment Technique Action Level (TT).

(8) "J" indicates that the reported concentration is below the method quantitation limits (reporting limits) and is therefore an estimated value.


(9) Yellow highlighted values exceed either MCL, TT Action Level or RSL.


(10) "B" indicates that the parameter was detected in a blank sample.

(11) Turbidity was above 5 NTU at this location at the time of sample collection.

(12) Appendix A refers to RIDEM's Appendix A list of hazardous inorganic and organic constituents from solid waste regulation No. 2 Solid Waste Landfills.

FIGURES

APPENDIX A

LIMITATIONS

GEOHYDROLOGICAL LIMITATIONS

Use of Report

 GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs.

6. Water level readings have been made in test holes (as described in the Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

Compliance with Codes and Regulations

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

Screening and Analytical Testing

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

Interpretation of Data

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

Additional Information

12. In the event that the Client or others authorized to use this report obtain information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

Additional Services

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

APPENDIX B

LABORATORY DATA SHEETS

Final Report
 Re-Issued Report
 Revised Report

Laboratory Report

Work Order: P0342 Project : Jamestown Landfill, 3/2015 Project #:

GZA GeoEnvironmental Inc. 530 Broadway Providence, RI 02909

Attn: Erik Beloff

Laboratory ID	Client Sample ID	Matrix	Date Sampled	Date Received
P0342-01	GZ-1	Aqueous	20-Mar-15 10:45	20-Mar-15 13:00
P0342-02	GZ-2	Aqueous	19-Mar-15 10:40	20-Mar-15 13:00
P0342-03	GZ-3	Aqueous	19-Mar-15 11:15	20-Mar-15 13:00
P0342-04	GZ-4	Aqueous	19-Mar-15 12:00	20-Mar-15 13:00
P0342-05	GZ-5	Aqueous	20-Mar-15 09:00	20-Mar-15 13:00
P0342-06	GZ-6	Aqueous	20-Mar-15 09:45	20-Mar-15 13:00
P0342-07	GZ-7S	Aqueous	19-Mar-15 12:30	20-Mar-15 13:00
P0342-08	GZ-7D	Aqueous	19-Mar-15 13:00	20-Mar-15 13:00
P0342-09	GZ-8	Aqueous	20-Mar-15 11:30	20-Mar-15 13:00
P0342-10	GZ-9	Aqueous	20-Mar-15 12:15	20-Mar-15 13:00
P0342-11	POT-1	Aqueous	20-Mar-15 12:30	20-Mar-15 13:00
P0342-12	TRIP BLANK	Aqueous	19-Mar-15 09:00	20-Mar-15 13:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received. This report may not be reproduced, except in full, without written approval from Spectrum Analytical.

All applicable NELAC or USEPA CLP requirments have been meet.

Spectrum Analytical (Rhode Island) is accredited under the National Environmental Laboratory Approval Program (NELAP) and DoD Environmental Laboratory Accreditation Program (ELAP), holds Organic and Inorganic contracts under the USEPA CLP Program and is certified under several states. The current list of our laboratory approvals and certifications is available on the Certifications page on our web site at www.spectrum-analytical.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

N/A
PH-0153
N/A
E87664
2007037
M-RI907
2631
RI001
11522
LAI00301
P330-08-00023
EP-W-09-039
EP-W-11-033

Authorized by:

1J-4

Yihai Ding Laboratory Director

REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client : GZA GeoEnvironmental Inc.

Project: Jamestown Landfill, 3/2015

Laboratory Workorder / SDG #: P0342

SW846 8260C, VOC by GC-MS

I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

II. HOLDING TIMES

A. Sample Preparation:

All samples were prepared within the method-specified holding times.

B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8260C

IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SW5030B

V. INSTRUMENTATION

The following instrumentation was used

Instrument Code: V5 Instrument Type: GCMS-VOA Description: HP6890 / HP6890 Manufacturer: Hewlett-Packard Model: 6890 / 6890

VI. ANALYSIS

A. Calibration:

Calibrations met the method/SOP acceptance criteria.

B. Blanks:

All method blanks were within the acceptance criteria.

C. Surrogates:

Surrogate standard percent recoveries were within the QC limits.

D. Spikes:

1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

E. Internal Standards:

Internal standard peak areas were within the QC limits.

F. Dilutions:

No sample in this SDG required analysis at dilution.

G. Samples:

No other unusual occurrences were noted during sample analysis.

H. Manual Integration

No manual integrations were performed on any sample or standard.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and

for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Signed:_ Date:_____4/2/2015____

REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client : GZA GeoEnvironmental Inc.

Project: Jamestown Landfill, 3/2015

Laboratory Workorder / SDG #: P0342

SW846 6020A

I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

II. HOLDING TIMES

A. Sample Preparation:

All samples were prepared within the method-specified holding times.

B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 6020A

IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SW3005A

V. INSTRUMENTATION

The following instrumentation was used:

Instrument Code: X1 Instrument Type: ICPMS Description: X1 Manufacturer: ThermoFisher Model: X-Series 2

VI. ANALYSIS

A. Calibration:

Calibrations met the method/SOP acceptance criteria.

B. Blanks:

All method blanks were within the acceptance criteria.

C. Spikes:

1. Laboratory Control Spikes (LCS):

Percent recoveries for laboratory control samples were within the QC limits.

2. Matrix spike (MS):

A matrix spike was not performed on any sample in this SDG.

D. Post Digestion Spike (PDS):

A post-digestion spike was not performed on any sample in this SDG.

E. Duplicate sample:

A duplicate analysis was not performed on any sample in this SDG.

F. Serial Dilution (SD):

Serial Dilution analysis was performed on sample: POT-1 (P0342-11BSD).

Percent differences were within the QC limits.

G. Samples:

No other unusual occurrences were noted during sample analysis.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Dan Grad

Signed: _

Date: 04/01/15

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-1

Lab ID: P0342-01

Project: Jamestown Landfill, 3/2015 Collection Date: 03/20/15 10:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
Chloromethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Vinyl chloride	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Bromomethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Chloroethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Trichlorofluoromethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,1-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Acetone	ND	5.0 ug/L	1 03/31/2015 14:34	81488
lodomethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Carbon disulfide	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Methylene chloride	ND	5.0 ug/L	1 03/31/2015 14:34	81488
trans-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,1-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Vinyl acetate	ND	5.0 ug/L	1 03/31/2015 14:34	81488
2-Butanone	ND	5.0 ug/L	1 03/31/2015 14:34	81488
cis-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Bromochloromethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Chloroform	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,1,1-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Carbon tetrachloride	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,2-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Benzene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Trichloroethene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,2-Dichloropropane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Dibromomethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Bromodichloromethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
cis-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
4-Methyl-2-pentanone	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Toluene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
trans-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,1,2-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Tetrachloroethene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
2-Hexanone	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Dibromochloromethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,2-Dibromoethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Chlorobenzene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,1,1,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Ethylbenzene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
m,p-Xylene	ND	5.0 ug/L	1 03/31/2015 14:34	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

04/02/2015

04/02/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-1

Lab ID: P0342-01

Project: Jamestown Landfill, 3/2015 Collection Date: 03/20/15 10:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
o-Xylene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Xylene (Total)	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Styrene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Bromoform	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,1,2,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,2,3-Trichloropropane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,3-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,4-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,2-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
1,2-Dibromo-3-chloropropane	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Acrylonitrile	ND	25 ug/L	1 03/31/2015 14:34	81488
trans-1,4-Dichloro-2-butene	ND	5.0 ug/L	1 03/31/2015 14:34	81488
Surrogate: Dibromofluoromethane	98.7	85-115 %REC	1 03/31/2015 14:34	81488
Surrogate: 1,2-Dichloroethane-d4	100	70-120 %REC	1 03/31/2015 14:34	81488
Surrogate: Toluene-d8	104	85-120 %REC	1 03/31/2015 14:34	81488
Surrogate: Bromofluorobenzene	98.1	75-120 %REC	1 03/31/2015 14:34	81488

Qualifiers: ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- **RL** Reporting Limit

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-2

Lab ID: P0342-02

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 10:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
Chloromethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Vinyl chloride	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Bromomethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Chloroethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Trichlorofluoromethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,1-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Acetone	ND	5.0 ug/L	1 03/31/2015 15:00	81488
lodomethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Carbon disulfide	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Methylene chloride	ND	5.0 ug/L	1 03/31/2015 15:00	81488
trans-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,1-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Vinyl acetate	ND	5.0 ug/L	1 03/31/2015 15:00	81488
2-Butanone	ND	5.0 ug/L	1 03/31/2015 15:00	81488
cis-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Bromochloromethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Chloroform	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,1,1-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Carbon tetrachloride	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,2-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Benzene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Trichloroethene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,2-Dichloropropane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Dibromomethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Bromodichloromethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
cis-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
4-Methyl-2-pentanone	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Toluene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
trans-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,1,2-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Tetrachloroethene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
2-Hexanone	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Dibromochloromethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,2-Dibromoethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Chlorobenzene	5.4	5.0 ug/L	1 03/31/2015 15:00	81488
1,1,1,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Ethylbenzene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
m,p-Xylene	ND	5.0 ug/L	1 03/31/2015 15:00	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

04/02/2015

04/02/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-2

Lab ID: P0342-02

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 10:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
o-Xylene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Xylene (Total)	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Styrene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Bromoform	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,1,2,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,2,3-Trichloropropane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,3-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,4-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,2-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
1,2-Dibromo-3-chloropropane	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Acrylonitrile	ND	25 ug/L	1 03/31/2015 15:00	81488
trans-1,4-Dichloro-2-butene	ND	5.0 ug/L	1 03/31/2015 15:00	81488
Surrogate: Dibromofluoromethane	97.1	85-115 %REC	1 03/31/2015 15:00	81488
Surrogate: 1,2-Dichloroethane-d4	99.0	70-120 %REC	1 03/31/2015 15:00	81488
Surrogate: Toluene-d8	104	85-120 %REC	1 03/31/2015 15:00	81488
Surrogate: Bromofluorobenzene	104	75-120 %REC	1 03/31/2015 15:00	81488

Qualifiers: ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- **B** Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- **RL** Reporting Limit

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-3

Lab ID: P0342-03

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 11:15

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS					SW8260_W
Chloromethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Vinyl chloride	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Bromomethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Chloroethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Trichlorofluoromethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
1,1-Dichloroethene	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Acetone	ND	5.0	ug/L	1 03/31/2015 15:25	81488
lodomethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Carbon disulfide	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Methylene chloride	ND	5.0	ug/L	1 03/31/2015 15:25	81488
trans-1,2-Dichloroethene	ND	5.0	ug/L	1 03/31/2015 15:25	81488
1,1-Dichloroethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Vinyl acetate	ND	5.0	ug/L	1 03/31/2015 15:25	81488
2-Butanone	ND	5.0	ug/L	1 03/31/2015 15:25	81488
cis-1,2-Dichloroethene	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Bromochloromethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Chloroform	ND	5.0	ug/L	1 03/31/2015 15:25	81488
1,1,1-Trichloroethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Carbon tetrachloride	ND	5.0	ug/L	1 03/31/2015 15:25	81488
1,2-Dichloroethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Benzene	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Trichloroethene	ND	5.0	ug/L	1 03/31/2015 15:25	81488
1,2-Dichloropropane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Dibromomethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Bromodichloromethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
cis-1,3-Dichloropropene	ND	5.0	ug/L	1 03/31/2015 15:25	81488
4-Methyl-2-pentanone	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Toluene	ND	5.0	ug/L	1 03/31/2015 15:25	81488
trans-1,3-Dichloropropene	ND	5.0	ug/L	1 03/31/2015 15:25	81488
1,1,2-Trichloroethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Tetrachloroethene	ND	5.0	ug/L	1 03/31/2015 15:25	81488
2-Hexanone	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Dibromochloromethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
1,2-Dibromoethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Chlorobenzene	ND	5.0	ug/L	1 03/31/2015 15:25	81488
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	1 03/31/2015 15:25	81488
Ethylbenzene	ND	5.0	ug/L	1 03/31/2015 15:25	81488
m,p-Xylene	ND	5.0	ug/L	1 03/31/2015 15:25	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

04/02/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-3

Lab ID: P0342-03

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 11:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
o-Xylene	ND	5.0 ug/L	1 03/31/2015 15:25	81488
Xylene (Total)	ND	5.0 ug/L	1 03/31/2015 15:25	81488
Styrene	ND	5.0 ug/L	1 03/31/2015 15:25	81488
Bromoform	ND	5.0 ug/L	1 03/31/2015 15:25	81488
1,1,2,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 15:25	81488
1,2,3-Trichloropropane	ND	5.0 ug/L	1 03/31/2015 15:25	81488
1,3-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 15:25	81488
1,4-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 15:25	81488
1,2-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 15:25	81488
1,2-Dibromo-3-chloropropane	ND	5.0 ug/L	1 03/31/2015 15:25	81488
Acrylonitrile	ND	25 ug/L	1 03/31/2015 15:25	81488
trans-1,4-Dichloro-2-butene	ND	5.0 ug/L	1 03/31/2015 15:25	81488
Surrogate: Dibromofluoromethane	97.0	85-115 %REC	1 03/31/2015 15:25	81488
Surrogate: 1,2-Dichloroethane-d4	97.3	70-120 %REC	1 03/31/2015 15:25	81488
Surrogate: Toluene-d8	103	85-120 %REC	1 03/31/2015 15:25	81488
Surrogate: Bromofluorobenzene	94.8	75-120 %REC	1 03/31/2015 15:25	81488

Qualifiers: ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- **B** Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- **RL** Reporting Limit

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-4

Lab ID: P0342-04

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 12:00

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS					SW8260_W
Chloromethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Vinyl chloride	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Bromomethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Chloroethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Trichlorofluoromethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
1,1-Dichloroethene	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Acetone	ND	5.0	ug/L	1 03/31/2015 15:51	81488
lodomethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Carbon disulfide	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Methylene chloride	ND	5.0	ug/L	1 03/31/2015 15:51	81488
trans-1,2-Dichloroethene	ND	5.0	ug/L	1 03/31/2015 15:51	81488
1,1-Dichloroethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Vinyl acetate	ND	5.0	ug/L	1 03/31/2015 15:51	81488
2-Butanone	ND	5.0	ug/L	1 03/31/2015 15:51	81488
cis-1,2-Dichloroethene	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Bromochloromethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Chloroform	ND	5.0	ug/L	1 03/31/2015 15:51	81488
1,1,1-Trichloroethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Carbon tetrachloride	ND	5.0	ug/L	1 03/31/2015 15:51	81488
1,2-Dichloroethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Benzene	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Trichloroethene	ND	5.0	ug/L	1 03/31/2015 15:51	81488
1,2-Dichloropropane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Dibromomethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Bromodichloromethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
cis-1,3-Dichloropropene	ND	5.0	ug/L	1 03/31/2015 15:51	81488
4-Methyl-2-pentanone	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Toluene	ND	5.0	ug/L	1 03/31/2015 15:51	81488
trans-1,3-Dichloropropene	ND	5.0	ug/L	1 03/31/2015 15:51	81488
1,1,2-Trichloroethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Tetrachloroethene	ND	5.0	ug/L	1 03/31/2015 15:51	81488
2-Hexanone	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Dibromochloromethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
1,2-Dibromoethane	ND	5.0	ug/L	1 03/31/2015 15:51	81488
Chlorobenzene	ND	5.0	ug/L	1 03/31/2015 15:51	81488
1,1,1,2-Tetrachloroethane	ND		ug/L	1 03/31/2015 15:51	81488
Ethylbenzene	ND	5.0	ug/L	1 03/31/2015 15:51	81488
m,p-Xylene	ND	5.0	ug/L	1 03/31/2015 15:51	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

04/02/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-4

Lab ID: P0342-04

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 12:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
o-Xylene	ND	5.0 ug/L	1 03/31/2015 15:51	81488
Xylene (Total)	ND	5.0 ug/L	1 03/31/2015 15:51	81488
Styrene	ND	5.0 ug/L	1 03/31/2015 15:51	81488
Bromoform	ND	5.0 ug/L	1 03/31/2015 15:51	81488
1,1,2,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 15:51	81488
1,2,3-Trichloropropane	ND	5.0 ug/L	1 03/31/2015 15:51	81488
1,3-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 15:51	81488
1,4-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 15:51	81488
1,2-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 15:51	81488
1,2-Dibromo-3-chloropropane	ND	5.0 ug/L	1 03/31/2015 15:51	81488
Acrylonitrile	ND	25 ug/L	1 03/31/2015 15:51	81488
trans-1,4-Dichloro-2-butene	ND	5.0 ug/L	1 03/31/2015 15:51	81488
Surrogate: Dibromofluoromethane	98.6	85-115 %REC	1 03/31/2015 15:51	81488
Surrogate: 1,2-Dichloroethane-d4	98.8	70-120 %REC	1 03/31/2015 15:51	81488
Surrogate: Toluene-d8	102	85-120 %REC	1 03/31/2015 15:51	81488
Surrogate: Bromofluorobenzene	94.3	75-120 %REC	1 03/31/2015 15:51	81488

Qualifiers: ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- **RL** Reporting Limit

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-5

Lab ID: P0342-05

Project: Jamestown Landfill, 3/2015 Collection Date: 03/20/15 9:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
Chloromethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Vinyl chloride	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Bromomethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Chloroethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Trichlorofluoromethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,1-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Acetone	ND	5.0 ug/L	1 03/31/2015 16:16	81488
lodomethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Carbon disulfide	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Methylene chloride	ND	5.0 ug/L	1 03/31/2015 16:16	81488
trans-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,1-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Vinyl acetate	ND	5.0 ug/L	1 03/31/2015 16:16	81488
2-Butanone	ND	5.0 ug/L	1 03/31/2015 16:16	81488
cis-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Bromochloromethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Chloroform	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,1,1-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Carbon tetrachloride	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,2-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Benzene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Trichloroethene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,2-Dichloropropane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Dibromomethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Bromodichloromethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
cis-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
4-Methyl-2-pentanone	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Toluene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
trans-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,1,2-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Tetrachloroethene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
2-Hexanone	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Dibromochloromethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,2-Dibromoethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Chlorobenzene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,1,1,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Ethylbenzene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
m,p-Xylene	ND	5.0 ug/L	1 03/31/2015 16:16	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

04/02/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-5

Lab ID: P0342-05

Project: Jamestown Landfill, 3/2015 Collection Date: 03/20/15 9:00

Analyses	Result Qual	RL Unit	ts DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
o-Xylene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Xylene (Total)	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Styrene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Bromoform	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,1,2,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,2,3-Trichloropropane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,3-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,4-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,2-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
1,2-Dibromo-3-chloropropane	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Acrylonitrile	ND	25 ug/L	1 03/31/2015 16:16	81488
trans-1,4-Dichloro-2-butene	ND	5.0 ug/L	1 03/31/2015 16:16	81488
Surrogate: Dibromofluoromethane	95.6	85-115 %REC	C 1 03/31/2015 16:16	81488
Surrogate: 1,2-Dichloroethane-d4	92.4	70-120 %REC	C 1 03/31/2015 16:16	81488
Surrogate: Toluene-d8	104	85-120 %REC	C 1 03/31/2015 16:16	81488
Surrogate: Bromofluorobenzene	102	75-120 %REC	C 1 03/31/2015 16:16	81488

Qualifiers:	ND - Not Detected at the Reporting Limit	
Qualifiers:	ND - Not Detected at the Reporting Limit	

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- **E** Value above quantitation range
- **RL** Reporting Limit

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-6

Lab ID: P0342-06

Project: Jamestown Landfill, 3/2015 Collection Date: 03/20/15 9:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
Chloromethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Vinyl chloride	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Bromomethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Chloroethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Trichlorofluoromethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,1-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Acetone	ND	5.0 ug/L	1 03/31/2015 16:42	81488
lodomethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Carbon disulfide	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Methylene chloride	ND	5.0 ug/L	1 03/31/2015 16:42	81488
trans-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,1-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Vinyl acetate	ND	5.0 ug/L	1 03/31/2015 16:42	81488
2-Butanone	ND	5.0 ug/L	1 03/31/2015 16:42	81488
cis-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Bromochloromethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Chloroform	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,1,1-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Carbon tetrachloride	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,2-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Benzene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Trichloroethene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,2-Dichloropropane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Dibromomethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Bromodichloromethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
cis-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
4-Methyl-2-pentanone	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Toluene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
trans-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,1,2-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Tetrachloroethene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
2-Hexanone	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Dibromochloromethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,2-Dibromoethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Chlorobenzene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,1,1,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Ethylbenzene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
m,p-Xylene	ND	5.0 ug/L	1 03/31/2015 16:42	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

Page 17 of 68

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-6

Lab ID: P0342-06

Project: Jamestown Landfill, 3/2015 Collection Date: 03/20/15 9:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
o-Xylene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Xylene (Total)	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Styrene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Bromoform	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,1,2,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,2,3-Trichloropropane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,3-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,4-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,2-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
1,2-Dibromo-3-chloropropane	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Acrylonitrile	ND	25 ug/L	1 03/31/2015 16:42	81488
trans-1,4-Dichloro-2-butene	ND	5.0 ug/L	1 03/31/2015 16:42	81488
Surrogate: Dibromofluoromethane	96.5	85-115 %REC	1 03/31/2015 16:42	81488
Surrogate: 1,2-Dichloroethane-d4	96.8	70-120 %REC	1 03/31/2015 16:42	81488
Surrogate: Toluene-d8	104	85-120 %REC	1 03/31/2015 16:42	81488
Surrogate: Bromofluorobenzene	100	75-120 %REC	1 03/31/2015 16:42	81488

Qualifiers:	ND - Not Detected at the Reporting Limit
-------------	--

- J Analyte detected below quanititation limits
- **B** Analyte detected in the associated Method Blank
- **DF** Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- **RL** Reporting Limit

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-7S

Lab ID: P0342-07

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 12:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
Chloromethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Vinyl chloride	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Bromomethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Chloroethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Trichlorofluoromethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,1-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Acetone	ND	5.0 ug/L	1 03/31/2015 17:07	81488
lodomethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Carbon disulfide	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Methylene chloride	ND	5.0 ug/L	1 03/31/2015 17:07	81488
trans-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,1-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Vinyl acetate	ND	5.0 ug/L	1 03/31/2015 17:07	81488
2-Butanone	ND	5.0 ug/L	1 03/31/2015 17:07	81488
cis-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Bromochloromethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Chloroform	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,1,1-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Carbon tetrachloride	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,2-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Benzene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Trichloroethene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,2-Dichloropropane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Dibromomethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Bromodichloromethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
cis-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
4-Methyl-2-pentanone	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Toluene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
trans-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,1,2-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Tetrachloroethene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
2-Hexanone	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Dibromochloromethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,2-Dibromoethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Chlorobenzene	1.4 J	5.0 ug/L	1 03/31/2015 17:07	81488
1,1,1,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Ethylbenzene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
m,p-Xylene	ND	5.0 ug/L	1 03/31/2015 17:07	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

04/02/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-7S

Lab ID: P0342-07

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 12:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
o-Xylene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Xylene (Total)	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Styrene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Bromoform	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,1,2,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,2,3-Trichloropropane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,3-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,4-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,2-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
1,2-Dibromo-3-chloropropane	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Acrylonitrile	ND	25 ug/L	1 03/31/2015 17:07	81488
trans-1,4-Dichloro-2-butene	ND	5.0 ug/L	1 03/31/2015 17:07	81488
Surrogate: Dibromofluoromethane	98.1	85-115 %REC	1 03/31/2015 17:07	81488
Surrogate: 1,2-Dichloroethane-d4	95.7	70-120 %REC	1 03/31/2015 17:07	81488
Surrogate: Toluene-d8	104	85-120 %REC	1 03/31/2015 17:07	81488
Surrogate: Bromofluorobenzene	97.5	75-120 %REC	1 03/31/2015 17:07	81488

Qualifiers:	ND - Not Detected at the Reporting Limit
-------------	--

- J Analyte detected below quanititation limits
- **B** Analyte detected in the associated Method Blank
- **DF** Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- **RL** Reporting Limit

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-7D

Lab ID: P0342-08

Project: Jamestown Landfill, 3/2015

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS					SW8260_W
Chloromethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Vinyl chloride	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Bromomethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Chloroethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Trichlorofluoromethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
1,1-Dichloroethene	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Acetone	ND	5.0	ug/L	1 03/31/2015 17:33	81488
lodomethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Carbon disulfide	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Methylene chloride	ND	5.0	ug/L	1 03/31/2015 17:33	81488
trans-1,2-Dichloroethene	ND	5.0	ug/L	1 03/31/2015 17:33	81488
1,1-Dichloroethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Vinyl acetate	ND	5.0	ug/L	1 03/31/2015 17:33	81488
2-Butanone	ND	5.0	ug/L	1 03/31/2015 17:33	81488
cis-1,2-Dichloroethene	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Bromochloromethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Chloroform	ND	5.0	ug/L	1 03/31/2015 17:33	81488
1,1,1-Trichloroethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Carbon tetrachloride	ND	5.0	ug/L	1 03/31/2015 17:33	81488
1,2-Dichloroethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Benzene	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Trichloroethene	ND	5.0	ug/L	1 03/31/2015 17:33	81488
1,2-Dichloropropane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Dibromomethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Bromodichloromethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
cis-1,3-Dichloropropene	ND	5.0	ug/L	1 03/31/2015 17:33	81488
4-Methyl-2-pentanone	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Toluene	ND	5.0	ug/L	1 03/31/2015 17:33	81488
trans-1,3-Dichloropropene	ND	5.0	ug/L	1 03/31/2015 17:33	81488
1,1,2-Trichloroethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Tetrachloroethene	ND	5.0	ug/L	1 03/31/2015 17:33	81488
2-Hexanone	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Dibromochloromethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
1,2-Dibromoethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Chlorobenzene	ND	5.0	ug/L	1 03/31/2015 17:33	81488
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	1 03/31/2015 17:33	81488
Ethylbenzene	ND	5.0	ug/L	1 03/31/2015 17:33	81488
m,p-Xylene	ND	5.0	ug/L	1 03/31/2015 17:33	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

04/02/2015

Collection Date: 03/19/15 13:00

04/02/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-7D

Lab ID: P0342-08

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 13:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
o-Xylene	ND	5.0 ug/L	1 03/31/2015 17:33	81488
Xylene (Total)	ND	5.0 ug/L	1 03/31/2015 17:33	81488
Styrene	ND	5.0 ug/L	1 03/31/2015 17:33	81488
Bromoform	ND	5.0 ug/L	1 03/31/2015 17:33	81488
1,1,2,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 17:33	81488
1,2,3-Trichloropropane	ND	5.0 ug/L	1 03/31/2015 17:33	81488
1,3-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 17:33	81488
1,4-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 17:33	81488
1,2-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 17:33	81488
1,2-Dibromo-3-chloropropane	ND	5.0 ug/L	1 03/31/2015 17:33	81488
Acrylonitrile	ND	25 ug/L	1 03/31/2015 17:33	81488
trans-1,4-Dichloro-2-butene	ND	5.0 ug/L	1 03/31/2015 17:33	81488
Surrogate: Dibromofluoromethane	98.1	85-115 %REC	1 03/31/2015 17:33	81488
Surrogate: 1,2-Dichloroethane-d4	102	70-120 %REC	1 03/31/2015 17:33	81488
Surrogate: Toluene-d8	106	85-120 %REC	1 03/31/2015 17:33	81488
Surrogate: Bromofluorobenzene	102	75-120 %REC	1 03/31/2015 17:33	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- **E** Value above quantitation range
- **RL** Reporting Limit

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-8

Lab ID: P0342-09

Project: Jamestown Landfill, 3/2015 Collection Date: 03/20/15 11:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
Chloromethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Vinyl chloride	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Bromomethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Chloroethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Trichlorofluoromethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,1-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Acetone	ND	5.0 ug/L	1 03/31/2015 17:58	81488
lodomethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Carbon disulfide	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Methylene chloride	ND	5.0 ug/L	1 03/31/2015 17:58	81488
trans-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,1-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Vinyl acetate	ND	5.0 ug/L	1 03/31/2015 17:58	81488
2-Butanone	ND	5.0 ug/L	1 03/31/2015 17:58	81488
cis-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Bromochloromethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Chloroform	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,1,1-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Carbon tetrachloride	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,2-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Benzene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Trichloroethene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,2-Dichloropropane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Dibromomethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Bromodichloromethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
cis-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
4-Methyl-2-pentanone	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Toluene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
trans-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,1,2-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Tetrachloroethene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
2-Hexanone	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Dibromochloromethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,2-Dibromoethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Chlorobenzene	4.2 J	5.0 ug/L	1 03/31/2015 17:58	81488
1,1,1,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Ethylbenzene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
m,p-Xylene	ND	5.0 ug/L	1 03/31/2015 17:58	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

04/02/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-8

Lab ID: P0342-09

Project: Jamestown Landfill, 3/2015 Collection Date: 03/20/15 11:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
o-Xylene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Xylene (Total)	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Styrene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Bromoform	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,1,2,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,2,3-Trichloropropane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,3-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,4-Dichlorobenzene	1.2 J	5.0 ug/L	1 03/31/2015 17:58	81488
1,2-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
1,2-Dibromo-3-chloropropane	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Acrylonitrile	ND	25 ug/L	1 03/31/2015 17:58	81488
trans-1,4-Dichloro-2-butene	ND	5.0 ug/L	1 03/31/2015 17:58	81488
Surrogate: Dibromofluoromethane	97.7	85-115 %REC	1 03/31/2015 17:58	81488
Surrogate: 1,2-Dichloroethane-d4	95.7	70-120 %REC	1 03/31/2015 17:58	81488
Surrogate: Toluene-d8	102	85-120 %REC	1 03/31/2015 17:58	81488
Surrogate: Bromofluorobenzene	98.0	75-120 %REC	1 03/31/2015 17:58	81488

Qualifiers:	ND - Not Detected at the Reporting Limit
C	

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- **RL** Reporting Limit

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-9

Lab ID: P0342-10

Project: Jamestown Landfill, 3/2015 Collection Date: 03/20/15 12:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
Chloromethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Vinyl chloride	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Bromomethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Chloroethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Trichlorofluoromethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,1-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Acetone	ND	5.0 ug/L	1 03/31/2015 18:24	81488
lodomethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Carbon disulfide	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Methylene chloride	ND	5.0 ug/L	1 03/31/2015 18:24	81488
trans-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,1-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Vinyl acetate	ND	5.0 ug/L	1 03/31/2015 18:24	81488
2-Butanone	ND	5.0 ug/L	1 03/31/2015 18:24	81488
cis-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Bromochloromethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Chloroform	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,1,1-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Carbon tetrachloride	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,2-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Benzene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Trichloroethene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,2-Dichloropropane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Dibromomethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Bromodichloromethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
cis-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
4-Methyl-2-pentanone	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Toluene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
trans-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,1,2-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Tetrachloroethene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
2-Hexanone	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Dibromochloromethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,2-Dibromoethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Chlorobenzene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,1,1,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Ethylbenzene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
m,p-Xylene	ND	5.0 ug/L	1 03/31/2015 18:24	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

04/02/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-9

Lab ID: P0342-10

Project: Jamestown Landfill, 3/2015 Collection Date: 03/20/15 12:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
o-Xylene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Xylene (Total)	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Styrene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Bromoform	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,1,2,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,2,3-Trichloropropane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,3-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,4-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,2-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
1,2-Dibromo-3-chloropropane	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Acrylonitrile	ND	25 ug/L	1 03/31/2015 18:24	81488
trans-1,4-Dichloro-2-butene	ND	5.0 ug/L	1 03/31/2015 18:24	81488
Surrogate: Dibromofluoromethane	99.8	85-115 %REC	1 03/31/2015 18:24	81488
Surrogate: 1,2-Dichloroethane-d4	96.5	70-120 %REC	1 03/31/2015 18:24	81488
Surrogate: Toluene-d8	106	85-120 %REC	1 03/31/2015 18:24	81488
Surrogate: Bromofluorobenzene	98.4	75-120 %REC	1 03/31/2015 18:24	81488

Qualifiers: ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- **B** Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- **RL** Reporting Limit

Client: GZA GeoEnvironmental Inc.

Client Sample ID: TRIP BLANK

Lab ID: P0342-12

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 9:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
Chloromethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Vinyl chloride	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Bromomethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Chloroethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Trichlorofluoromethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,1-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Acetone	ND	5.0 ug/L	1 03/31/2015 14:09	81488
lodomethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Carbon disulfide	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Methylene chloride	ND	5.0 ug/L	1 03/31/2015 14:09	81488
trans-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,1-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Vinyl acetate	ND	5.0 ug/L	1 03/31/2015 14:09	81488
2-Butanone	ND	5.0 ug/L	1 03/31/2015 14:09	81488
cis-1,2-Dichloroethene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Bromochloromethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Chloroform	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,1,1-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Carbon tetrachloride	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,2-Dichloroethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Benzene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Trichloroethene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,2-Dichloropropane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Dibromomethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Bromodichloromethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
cis-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
4-Methyl-2-pentanone	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Toluene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
trans-1,3-Dichloropropene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,1,2-Trichloroethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Tetrachloroethene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
2-Hexanone	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Dibromochloromethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,2-Dibromoethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Chlorobenzene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,1,1,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Ethylbenzene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
m,p-Xylene	ND	5.0 ug/L	1 03/31/2015 14:09	81488

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

04/02/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: TRIP BLANK

Lab ID: P0342-12

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 9:00

Analyses	Result Qual	RL Units	S DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS				SW8260_W
o-Xylene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Xylene (Total)	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Styrene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Bromoform	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,1,2,2-Tetrachloroethane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,2,3-Trichloropropane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,3-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,4-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,2-Dichlorobenzene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
1,2-Dibromo-3-chloropropane	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Acrylonitrile	ND	25 ug/L	1 03/31/2015 14:09	81488
trans-1,4-Dichloro-2-butene	ND	5.0 ug/L	1 03/31/2015 14:09	81488
Surrogate: Dibromofluoromethane	96.7	85-115 %REC	1 03/31/2015 14:09	81488
Surrogate: 1,2-Dichloroethane-d4	95.8	70-120 %REC	1 03/31/2015 14:09	81488
Surrogate: Toluene-d8	104	85-120 %REC	1 03/31/2015 14:09	81488
Surrogate: Bromofluorobenzene	99.8	75-120 %REC	1 03/31/2015 14:09	81488

Qualifiers:	ND - Not Detected at the Reporting Limit
-------------	--

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- **E** Value above quantitation range
- **RL** Reporting Limit

Content: GZA C Work Order: P0342 Project: Jamest Sample ID: MB-81488 Client ID: MB-81488 Analyte Analyte Chloromethane Vinyl chloride Bromomethane	aeoEnvironm own Landfill SampT Batch		SW8260 SW846	ANALYTICAL QC SUMMARY REPORT)_W	SUMMARY	REPORT		
B-8-14-	stown Landfill, 3/2015 SampType: MBLK Batch ID: 81488							
Sample ID: MB-81488 Client ID: MB-81488 Analyte Chloromethane Bromomethane Bromomethane	SampType: MBLK Batch ID: 81488		/M. V.	SW846 8260C VOC by GC-MS	IS			
Client ID: MB-81488 Analyte Chloromethane Vinyl chloride Bromomethane Chloroethane	Batch ID: 81488	TestCode: SW8260_W	M_W	Prep Date:	03/31/15 8:55	Run ID: V5_150331A		
Analyte Chloromethane Vinyl chloride Bromomethane		Units: ug/L		Analysis Date:	03/31/15 11:35	SeqNo: 2245019		
Chloromethane Vinyl chloride Bromomethane	Result	MDL RL	SPK value	alue SPK Ref Val	%REC LowLimit HighLimit	imit RPD Ref Val	%RPD RPDLimit	Qual
/inyl chloride Bromomethane Chloroethane	ND	0.26 5	5.0					
3romomethane Chloroethane	UN	0.50 5	5.0					
Chloroethane	UN		5.0					
	UN		5.0					
l richlor of luoromethane	UN		5.0					
1,1-Dichloroethene	UN	0	5.0					
Acetone	ND		5.0					
lodomethane	UN		5.0					
Carbon disulfide	CN		5.0					
Methylene chloride	ND		5.U					
trans-1,2-Dichloroethene	QN .		5.0					
1, 1-Dichloroethane		C C C C C	о.с С					
vinyi acetate			о.с Л					
z-butariorie cie 1 2 Dickloroothono		a	о. С					
uis- 1,z-Dictilio Oetrierie Bromochloromothano								
BI ULI IOCI II U ULI ELI IAI IE Chlaraform	DN DN		5.0					
1,1,1-Trichloroethane	CIN		5.0					
Carbon tetrachloride	UN		5.0					
1,2-Dichloroethane	UN		5.0					
Benzene	UN		5.0					
Trichloroethene	ND		5.0					
1,2-Dichloropropane	ND		5.0					
Dibromomethane	QN		5.0					
Bromodichloromethane								
cis-1,3-Dichloropropene			5.U					
4-Methyl-2-pentanone		2 . U	0.0 0					
I oluene			о. С					
1 a 1 a Trichlorocthono								
1,1,2-11101101001114116								
i eli acriiol oetrierie o i louzzazio								
z-Hexanone			0.0 C					
C. Dihromoethane			5.0					
	UN		2.0					
1001.2-Tetrachloroethane	UN		5.0					

CLIENT:	GZA GeoEnvironmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SUM	IMAR	Y REPO	ORT		
Verk Order: Penject:	P0342 Jamestown Landfill, 3/2015		IS IS	SW8260_W SW846 8260C VOC by GC-MS	OC by GC-N	SI					
Sample ID: MB-81488	488 SampType: MBLK		TestCode: SW8260_W		Prep Date:	s: 03/31/15 8:55	8:55	Run II	Run ID: V5_150331A		
Client ID: MB-81488	488 Batch ID: 81488	Units: ug/L	ng/L		Analysis Date: 03/31/15 11:35	21/12 03/31/15	11:35	SegN	SeqNo: 2245019		
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC 1	%REC LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Ethylbenzene	ND	0.35	5.0								
m,p-Xylene	ND	0.77	5.0								
o-Xylene	UN	0.36	5.0								
Xylene (Total)	DN	0.36	5.0								
Styrene	DN	0.50	5.0								
Bromoform		0.77	5.0								
1,1,2,2-Tetrachloroethane		0.42	5.0								
1,2,3-Trichloropropane	ne ND	0.82	5.0								
1,3-Dichlorobenzene		0.29	5.0								
1,4-Dichlorobenzene	ND	0.40	5.0								
1,2-Dichlorobenzene	ND	0.33	5.0								
1,2-Dibromo-3-chloropropane	opropane ND	0.75	5.0								
Acrylonitrile	ND	2.1	5.0								
trans-1,4-Dichloro-2-butene	-butene ND	1.5	5.0								
Surrogate:	50.49		5.0	50.00	0	101	85	115	0		
Dibromofluoromethane			C L		c		C	0	c		
Surrogate: 1,2- Dichloroethane-d4	48.51		5.0	50.00	0	97.0	07	120	0		
Surrogate: Toluene-d8	∋-d8 52.09		5.0	50.00	0	104	85	120	0		
Surrogate:			5.0	50.00	0	102	75	120	0		
Bromofluorobenzene											
Page 3											
0 01											
alifiers: 13.22.229	ND - Not Detected at the MDL J - Analyte detected below quanititation limits	S - Recovery outsi R - RPD outside a	S - Recovery outside accepted recovery limits R - RPD outside accepted recovery limits		MDL - Method Detection Limit RL - Reporting Limit	imit		B - A	vnalyte detected in t	B - Analyte detected in the associated Method Blank	ank

ct ient:	GZA GeoEnvironmental Inc.			ANALYI	ANALYTICAL QC SUMMARY REPORT	SUM	MAR	Y REP(DRT		
Kork Order: Rybject:	P0342 Jamestown Landfill, 3/2015		SW8260_W SW846 8260	S	VOC by GC-MS	S					
Sample ID: LCS-81488	488 SampType: LCS	TestCode: SW8260_W	N8260_W		Prep Date:	03/31/15 8:55	3:55	Run ID:): V5_150331A		
Client ID: LCS-81488	488 Batch ID: 81488	Units: ug/L	јГ		Analysis Date:	03/31/15 9:52	9:52	SeqNo:	o: 2245017		
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC L	LowLimit Hi	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Chloromethane	52.40	0.26	5.0	50.00	0	105	40	125	0]
Vinyl chloride	48.89	0.50	5.0	50.00	0	97.8	50	145	0		
Bromomethane	50.64	0.80	5.0	50.00	0	101	30	145	0		
Chloroethane	50.88	0.48	5.0	50.00	0	102	60	135	0		
Trichlorofluoromethane		0.54	5.0	50.00	0	106	60	145	0		
1,1-Dichloroethene	55.07	0.39	5.0	50.00	0	110	70	130	0		
Acetone	44.28	2.2	5.0	50.00	0	88.6	40	140	0		
lodomethane	49.97	0.63	5.0	50.00	0	6.66	72	121	0		
Carbon disulfide	49.25	0.34		50.00	0	98.5	35	160	0		
Methylene chloride	51.36	0.41		50.00	0	103	55	140	0		
trans-1,2-Dichloroethene		0.65	5.0	50.00	0	101	60	140	0		
1,1-Dichloroethane	49.69	0.25	5.0	50.00	0	99.4	70	135	0		
Vinyl acetate	53.09	0.35	5.0	50.00	0	106	38	163	0		
2-Butanone		2.1	5.0	50.00	0	110	30	150	0		
cis-1,2-Dichloroethene		0.48	5.0	50.00	0	101	70	125	0		
Bromochloromethane		0.43	5.0	50.00	0	108	65	130	0		
Chloroform	52.27	0.33	5.0	50.00	0	105	65	135	0		
1,1,1-Trichloroethane		0.50	5.0	50.00	0	98.8	65	130	0		
Carbon tetrachloride	49.44	0.54	5.0	50.00	0	98.9	65	140	0		
1,2-Dichloroethane	53.89	0.41	5.0	50.00	0	108	70	130	0		
Benzene	51.21	0.33	5.0	50.00	0	102	80	120	0		
Trichloroethene	50.95	0.36	5.0	50.00	0	102	70	125	0		
1,2-Dichloropropane	52.52	0.61	5.0	50.00	0	105	75	125	0		
Dibromomethane	54.97	0.49	5.0	50.00	0	110	75	125	0		
Bromodichloromethane		0.26	5.0	50.00	0	108	75	120	0		
cis-1,3-Dichloropropene		0.45	5.0	50.00	0	109	70	130	0		
4-Methyl-2-pentanone		0.82	5.0	50.00	0	103	60	135	0		
Toluene		0.32	5.0	50.00	0	102	75	120	0		
trans-1,3-Dichloropropene	pene 56.96	0.48	5.U	50.00		114	55 7	140 10F			
1, 1, 2- I richioroethane					5 0				5 0		
1 etrachioroethene 2 Howanano	24.42 20 20	CO. L	о. С			+ 0 + - 1 - 1	n u Fu				
Z-Hexanone			0 0		5 0	/ T T			5 0		
Dibromochloromethane	0/.00 20.73	/c.n	0.0	00.02	5 0	L14	00	1.25 0.01			
	07.00 10 75		о с 0		5 0	1 1 1 1 0 0 1 0 0			5 6		
		0.40						100			
1, 2, 1, 2-1 etrachioroethane		0.4L 0.2E	о. С		5 0	۲ D L	0 L	1.5U			
Etbylbenzene	54.L3 	c.u	5.U	50.UU	5	7 N R	c/.	97.T			
mp-Xylene	109.5	77.0	5.0	100.0	0	110	75	130	0		
Onalifiers: ND - N	ND - Not Detected at the MDI.	S - Recovery outside	S - Recovery outside accented recovery limits		MDL - Method Detection Limit	nit		B - A	nalvte detected in t	B - Analyte detected in the associated Method Blank	lank
					···· 1	i		1			
	J - Analyte detected below quantitation minus	K - KFD OUISIDE ACCEPIED FECOVERY LITHUS	chea recovery muus	ит - керо	kr - keporung Linut						

chient:	GZA GeoEnvironmental Inc.	mental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SU	MMA	XY REP	ORT		
Pork Order: Poliect:	P0342 Jamestown Landfill, 3/2015	II, 3/2015		S S	SW8260_W SW846 8260C V	VOC by GC-MS	SM					
Sample ID: LCS-81488		SampType: LCS	TestCode	TestCode: SW8260_W		Prep Date:		03/31/15 8:55	Run	Run ID: V5_150331A		
Client ID: LCS-81488		Batch ID: 81488	Units	Units: ug/L		Analysis Date:	.e: 03/31/15 9:52	15 9:52	SeqN	SeqNo: 2245017		
Analyte		Result	MDL	RL	SPK value	SPK Ref Val	I %REC	LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
o-Xylene	2	54.66	0.36	5.0	50.00	0	109	80	120	0		
Xylene (Total)	16	164.2	0.36	5.0	150.0	0	109	81	121	0		
Styrene	5	57.65	0.50	5.0	50.00	0	115	65	135	0		
Bromoform	5	55.89	0.77	5.0	50.00	0	112	70	130	0		
1,1,2,2-Tetrachloroethane		54.19	0.42	5.0	50.00	0	108	65	130	0		
1,2,3-Trichloropropane		56.82	0.82	5.0	50.00	0	114	75	125	0		
1,3-Dichlorobenzene		52.05	0.29	5.0	50.00	0	104	75	125	0		
1,4-Dichlorobenzene		51.22	0.40	5.0	50.00	0	102	75	125	0		
1,2-Dichlorobenzene		54.59	0.33	5.0	50.00	0	109	70	120	0		
1,2-Dibromo-3-chloropropane		61.59	0.75	5.0	50.00	0	123	50	130	0		
Acrylonitrile		56.19	2.1	5.0	50.00	0	112	45	172	0		
trans-1,4-Dichloro-2-butene		58.75	1.5	5.0	50.00	0	118	0	226	0		
Surrogate:		48.85		5.0	50.00	0	97.7	85	115	0		
Dibromofluoromethane												
Surrogate: 1,2- Dichloroethane-d4	ы	52.24		5.0	50.00	0	104	70	120	0		
Surrogate: Toluene-d8		51.45		5.0	50.00	0	103	85	120	0		
Surronate:		52.48		5.0	50.00	C	105	75	120	С		
Bromofluorobenzene		0) • •))	0		2	5 1 1)		
Pa												
ge (
32 c												
alifiers:	ND - Not Detected at the MDI		S - Recovery out	S - Recovery outside accented recovery limits		MDL - Method Detection Limit	,imit		B - A	Analyte detected in th	B - Analyte detected in the associated Method Blank	ank
	J - Analyte detected below quantitiation limits	nititation limits	R - RPD outside accepted recov	accepted recovery limits		RL - Reporting Limit			2			1

CLIENT:	GZA GeoEnvironmental Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT	C SUI	AMAF	XY REP(ORT			
Pork Order: Polject:	P0342 Jamestown Landfill, 3/2015			SW8260_W SW846 8260C V	VOC by GC-MS	SI						
Sample ID: LCSD-81488	81488 SampType: LCSD	TestCode:	TestCode: SW8260_W		Prep Date:	03/31/15 8:55	5 8:55	Run II	Run ID: V5_150331A			
Client ID: LCSD-81488	81488 Batch ID: 81488	Units: ug/L	ng/L		Analysis Date:		03/31/15 10:18	SegN	SeqNo: 2245018			
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit		Qual
Chloromethane	51.65	0.26	5.0	50.00	0	103	40	125	52.40	1.44	40]
Vinyl chloride	52.49	0.50	5.0	50.00	0	105	50	145	48.89	7.08	40	
Bromomethane	52.85	0.80	5.0	50.00	0	106	30	145	50.64	4.28	40	
Chloroethane	52.20	0.48	5.0	50.00	0	104	60	135	50.88	2.56	40	
Trichlorofluoromethane	ne 57.02	0.54	5.0	50.00	0	114	60	145	53.10	7.13	40	
1,1-Dichloroethene	56.20	0.39	5.0	50.00	0	112	70	130	55.07	2.04	40	
Acetone	53.68	2.2	5.0	50.00	0	107	40	140	44.28	19.2	40	
lodomethane	52.00	0.63	5.0	50.00	0	104	72	121	49.97	3.97	40	
Carbon disulfide	51.35	0.34	5.0	50.00	0	103	35	160	49.25	4.18	40	
Methylene chloride	50.83	0.41	5.0	50.00	0	102	55	140	51.36	1.04	40	
trans-1,2-Dichloroethene		0.65	5.0	50.00	0	102	60	140	50.56	0.968	40	
1,1-Dichloroethane	51.01	0.25	5.0	50.00	0	102	70	135	49.69	2.63	40	
Vinyl acetate	52.81	0.35	5.0	50.00	0	106	38	163	53.09	0.53	40	
2-Butanone	53.04	2.1	5.0	50.00	0	106	30	150	55.14	3.89	40	
cis-1,2-Dichloroethene		0.48	5.0	50.00	0	104	70	125	50.74	2.37	40	
Bromochloromethane		0.43	5.0	50.00	0	104	65	130	54.00	3.97	40	
Chloroform	51.85	0.33	5.0	50.00	0	104	65	135	52.27	0.81	40	
1,1,1-Trichloroethane	e 49.65	0.50	5.0	50.00	0	99.3	65	130	49.38	0.547	40	
Carbon tetrachloride		0.54	5.0	50.00	0	105	65	140	49.44	6.3	40	
1,2-Dichloroethane	52.68	0.41	5.0	50.00	0	105	70	130	53.89	2.27	40	
Benzene	51.66	0.33	5.0	50.00	0	103	80	120	51.21	0.873	40	
Trichloroethene	52.44	0.36	5.0	50.00	0	105	70	125	50.95	2.89	40	
1,2-Dichloropropane	52.55	0.61	5.0	50.00	0	105	75	125	52.52	0.059	40	
Dibromomethane	56.00	0.49	5.0	50.00	0	112	75	125	54.97	1.87	40	
Bromodichloromethane		0.26	5.0	50.00	0	107	75	120	53.93	0.831	40	
cis-1,3-Dichloropropene		0.45	5.0	50.00	0	108	70	130	54.47	0.761	40	
4-Methyl-2-pentanone	e 52.55 52.55	0.82	5.0 0	50.00 F0.00	0 0	105 105	0 0	135 120	17.16 10.05	1.61 7.50	40	
toluene trans 1.2 Dichloropropo		0.32	о с С			COT	с г С	140	30.90 56 96	0C.2 CCL U	40	
1 1 2-Trichloroethane		0.38	5.0	50.00	0	107	75	125	54.90	2.36	40	
Tetrachloroethene		0.65	5.0	50.00	0	104	45	150	51.91	0.381	40	
2-Hexanone	55.25	1.7	5.0	50.00	0	110	55	130	58.38	5.51	40	
Dibromochloromethane		0.57	5.0	50.00	0	109	60	135	56.76	4.51	40	
1 ,3 Dibromoethane	55.10	0.50	5.0	50.00	0	110	80	120	57.03	3.44	40	
Contraction	52.86	0.26	5.0	50.00	0	106	80	120	53.75	1.67	40	
16,1,2-Tetrachloroethane		0.41	5.0	50.00	0	108	80	130	54.34	0.921	40	
Etby lbenzene	55.82	0.35	5.0	50.00	0	112	75	125	54.13	3.08	40	
mo-Xylene	109.4	0.77	5.0	100.0	0	109	75	130	109.5	0.0733	40	
	ND - Not Detected at the MDI.	S - Recovery outside accented	ide accented recovery limits		MDL - Method Detection Limit	imit		B - A	B - Analyte detected in the associated Method Blank	he associated	Method Bla	ank
	1 - Analytic detected holow anomitication limits	DDD Duriting						ï				
	Male uercreu perow yuan uauau alle	N - MCUU U VUINA a	Inception recovery		NL - Reporting Linit							

CLIENT: GZA	GZA GeoEnvironmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SUM	MAR	Y REPC	IRT		
rder:	2			SW8260_W		č					
Ruject: Jame	Jamestown Landnii, 3/2015		S	SW846 8260C VOC by GC-MS	OC by GC-N	IS					
Sample ID: LCSD-81488	SampType: LCSD	TestCode	TestCode: SW8260_W		Prep Date:	03/31/15 8:55	8:55	Run ID	Run ID: V5_150331A		
Client ID: LCSD-81488	Batch ID: 81488	Units:	Units: ug/L		Analysis Date:	03/31/15 10:18	10:18	SeqNo	SeqNo: 2245018		
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC L	LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	DLimit Qual
o-Xylene	54.20	0.36	5.0	50.00	0	108	80	120	54.66	0.846	40
Xylene (Total)	163.6	0.36	5.0	150.0	0	109	81	121	164.2	0.33	40
Styrene	56.92	0.50	5.0	50.00	0	114	65	135	57.65	1.27	40
Bromoform	54.24	0.77	5.0	50.00	0	108	70	130	55.89	3.01	40
1,1,2,2-Tetrachloroethane	52.62	0.42	5.0	50.00	0	105	65	130	54.19	2.93	40
1,2,3-Trichloropropane	53.21	0.82	5.0	50.00	0	106	75	125	56.82	6.55	40
1,3-Dichlorobenzene	51.71	0.29	5.0	50.00	0	103	75	125	52.05	0.654	40
1,4-Dichlorobenzene	50.77	0.40	5.0	50.00	0	102	75	125	51.22	0.887	40
1,2-Dichlorobenzene	54.82	0.33	5.0	50.00	0	110	70	120	54.59	0.414	40
1,2-Dibromo-3-chloropropane	e 57.86	0.75	5.0	50.00	0	116	50	130	61.59	6.26	40
Acrylonitrile	57.34	2.1	5.0	50.00	0	115	45	172	56.19	2.03	40
trans-1,4-Dichloro-2-butene	53.29	1.5	5.0	50.00	0	107	0	226	58.75	9.74	40
Surrogate: Dibromofluoromethane	51.01		5.0	50.00	0	102	85	115	0	0	40
Surrogate: 1,2- Dichloroethane-d4	53.66		5.0	50.00	0	107	70	120	0	0	40
Surrogate: Toluene-d8	52.38		5.0	50.00	0	105	85	120	0	0	40
Surrogate: Bromofluorobenzene	51.85		5.0	50.00	0	104	75	120	0	0	40

	B - Analyte detected in the associated Method Blank	
	MDL - Method Detection Limit	RL - Reporting Limit
	S - Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits
	aritiers: ND - Not Detected at the MDL	m15.03.22.229 J - Analyte detected below quanititation limits R- RPD outside accepted r
Page 34 of	O alifiers:	m15.03.22.2229

04/01/2015

Client: GZA GeoEnvironmental Inc. Client Sample ID: GZ-1

Lab ID: P0342-01

Project:Jamestown Landfill, 3/2015Collection Date:03/20/15 10:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6020A Metals by ICP-MS				SW6020_W
Antimony	ND	2.0 ug/L	1 03/25/2015 14:48	81388
Arsenic	ND	2.0 ug/L	1 03/25/2015 14:48	81388
Barium	ND	10 ug/L	1 03/25/2015 14:48	81388
Beryllium	ND	1.0 ug/L	1 03/25/2015 14:48	81388
Cadmium	ND	1.0 ug/L	1 03/25/2015 14:48	81388
Chromium	ND	2.0 ug/L	1 03/25/2015 14:48	81388
Cobalt	2.6	1.0 ug/L	1 03/25/2015 14:48	81388
Copper	ND	5.0 ug/L	1 03/25/2015 14:48	81388
Lead	ND	1.0 ug/L	1 03/25/2015 14:48	81388
Nickel	17	1.0 ug/L	1 03/25/2015 14:48	81388
Selenium	ND	5.0 ug/L	1 03/25/2015 14:48	81388
Silver	ND	1.0 ug/L	1 03/25/2015 14:48	81388
Thallium	ND	1.0 ug/L	1 03/25/2015 14:48	81388
Vanadium	ND	5.0 ug/L	1 03/25/2015 14:48	81388
Zinc	12	5.0 ug/L	1 03/25/2015 14:48	81388

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

04/01/2015

Client: GZA GeoEnvironmental Inc. Client Sample ID: GZ-2

Lab ID: P0342-02

Project:Jamestown Landfill, 3/2015Collection Date:03/19/15 10:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6020A Metals by ICP-MS				SW6020_W
Antimony	ND	2.0 ug/L	1 03/25/2015 14:53	81388
Arsenic	ND	2.0 ug/L	1 03/25/2015 14:53	81388
Barium	43	10 ug/L	1 03/25/2015 14:53	81388
Beryllium	ND	1.0 ug/L	1 03/25/2015 14:53	81388
Cadmium	ND	1.0 ug/L	1 03/25/2015 14:53	81388
Chromium	ND	2.0 ug/L	1 03/25/2015 14:53	81388
Cobalt	220	1.0 ug/L	1 03/25/2015 14:53	81388
Copper	ND	5.0 ug/L	1 03/25/2015 14:53	81388
Lead	ND	1.0 ug/L	1 03/25/2015 14:53	81388
Nickel	39	1.0 ug/L	1 03/25/2015 14:53	81388
Selenium	ND	5.0 ug/L	1 03/25/2015 14:53	81388
Silver	ND	1.0 ug/L	1 03/25/2015 14:53	81388
Thallium	ND	1.0 ug/L	1 03/25/2015 14:53	81388
Vanadium	ND	5.0 ug/L	1 03/25/2015 14:53	81388
Zinc	9.0	5.0 ug/L	1 03/25/2015 14:53	81388

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

04/01/2015

Client: GZA GeoEnvironmental Inc. Client Sample ID: GZ-3

Lab ID: P0342-03

Project:Jamestown Landfill, 3/2015Collection Date:03/19/15 11:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6020A Metals by ICP-MS				SW6020_W
Antimony	ND	2.0 ug/L	1 03/25/2015 14:58	81388
Arsenic	ND	2.0 ug/L	1 03/25/2015 14:58	81388
Barium	36	10 ug/L	1 03/25/2015 14:58	81388
Beryllium	ND	1.0 ug/L	1 03/25/2015 14:58	81388
Cadmium	ND	1.0 ug/L	1 03/25/2015 14:58	81388
Chromium	ND	2.0 ug/L	1 03/25/2015 14:58	81388
Cobalt	ND	1.0 ug/L	1 03/25/2015 14:58	81388
Copper	ND	5.0 ug/L	1 03/25/2015 14:58	81388
Lead	ND	1.0 ug/L	1 03/25/2015 14:58	81388
Nickel	5.0	1.0 ug/L	1 03/25/2015 14:58	81388
Selenium	ND	5.0 ug/L	1 03/25/2015 14:58	81388
Silver	ND	1.0 ug/L	1 03/25/2015 14:58	81388
Thallium	ND	1.0 ug/L	1 03/25/2015 14:58	81388
Vanadium	ND	5.0 ug/L	1 03/25/2015 14:58	81388
Zinc	15	5.0 ug/L	1 03/25/2015 14:58	81388

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

04/01/2015

Client: GZA GeoEnvironmental Inc. Client Sample ID: GZ-4

Lab ID: P0342-04

Project:Jamestown Landfill, 3/2015Collection Date:03/19/15 12:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6020A Metals by ICP-MS				SW6020_W
Antimony	ND	2.0 ug/L	1 03/25/2015 15:03	81388
Arsenic	ND	2.0 ug/L	1 03/25/2015 15:03	81388
Barium	13	10 ug/L	1 03/25/2015 15:03	81388
Beryllium	ND	1.0 ug/L	1 03/25/2015 15:03	81388
Cadmium	ND	1.0 ug/L	1 03/25/2015 15:03	81388
Chromium	2.5	2.0 ug/L	1 03/25/2015 15:03	81388
Cobalt	ND	1.0 ug/L	1 03/25/2015 15:03	81388
Copper	ND	5.0 ug/L	1 03/25/2015 15:03	81388
Lead	ND	1.0 ug/L	1 03/25/2015 15:03	81388
Nickel	13	1.0 ug/L	1 03/25/2015 15:03	81388
Selenium	ND	5.0 ug/L	1 03/25/2015 15:03	81388
Silver	1.1	1.0 ug/L	1 03/25/2015 15:03	81388
Thallium	ND	1.0 ug/L	1 03/25/2015 15:03	81388
Vanadium	ND	5.0 ug/L	1 03/25/2015 15:03	81388
Zinc	15	5.0 ug/L	1 03/25/2015 15:03	81388

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

04/01/2015

Client: GZA GeoEnvironmental Inc. Client Sample ID: GZ-5

Lab ID: P0342-05

Project: Jamestown Landfill, 3/2015 **Collection Date:** 03/20/15 9:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6020A Metals by ICP-MS				SW6020_W
Antimony	ND	2.0 ug/L	1 03/25/2015 15:18	81388
Arsenic	ND	2.0 ug/L	1 03/25/2015 15:18	81388
Barium	ND	10 ug/L	1 03/25/2015 15:18	81388
Beryllium	ND	1.0 ug/L	1 03/25/2015 15:18	81388
Cadmium	ND	1.0 ug/L	1 03/25/2015 15:18	81388
Chromium	ND	2.0 ug/L	1 03/25/2015 15:18	81388
Cobalt	59	1.0 ug/L	1 03/25/2015 15:18	81388
Copper	ND	5.0 ug/L	1 03/25/2015 15:18	81388
Lead	ND	1.0 ug/L	1 03/25/2015 15:18	81388
Nickel	4.9	1.0 ug/L	1 03/25/2015 15:18	81388
Selenium	ND	5.0 ug/L	1 03/25/2015 15:18	81388
Silver	ND	1.0 ug/L	1 03/25/2015 15:18	81388
Thallium	ND	1.0 ug/L	1 03/25/2015 15:18	81388
Vanadium	ND	5.0 ug/L	1 03/25/2015 15:18	81388
Zinc	ND	5.0 ug/L	1 03/25/2015 15:18	81388

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

04/01/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-6

Lab ID: P0342-06

Project: Jamestown Landfill, 3/2015 **Collection Date:** 03/20/15 9:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6020A Metals by ICP-MS				SW6020_W
Antimony	ND	2.0 ug/L	1 03/25/2015 15:23	81388
Arsenic	ND	2.0 ug/L	1 03/25/2015 15:23	81388
Barium	ND	10 ug/L	1 03/25/2015 15:23	81388
Beryllium	ND	1.0 ug/L	1 03/25/2015 15:23	81388
Cadmium	ND	1.0 ug/L	1 03/25/2015 15:23	81388
Chromium	ND	2.0 ug/L	1 03/25/2015 15:23	81388
Cobalt	3.2	1.0 ug/L	1 03/25/2015 15:23	81388
Copper	15	5.0 ug/L	1 03/25/2015 15:23	81388
Lead	ND	1.0 ug/L	1 03/25/2015 15:23	81388
Nickel	16	1.0 ug/L	1 03/25/2015 15:23	81388
Selenium	ND	5.0 ug/L	1 03/25/2015 15:23	81388
Silver	ND	1.0 ug/L	1 03/25/2015 15:23	81388
Thallium	ND	1.0 ug/L	1 03/25/2015 15:23	81388
Vanadium	ND	5.0 ug/L	1 03/25/2015 15:23	81388
Zinc	13	5.0 ug/L	1 03/25/2015 15:23	81388

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

04/01/2015

Client: GZA GeoEnvironmental Inc. Client Sample ID: GZ-7S

Lab ID: P0342-07

Project:Jamestown Landfill, 3/2015Collection Date:03/19/15 12:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6020A Metals by ICP-MS				SW6020_W
Antimony	ND	2.0 ug/L	1 03/25/2015 15:28	81388
Arsenic	ND	2.0 ug/L	1 03/25/2015 15:28	81388
Barium	23	10 ug/L	1 03/25/2015 15:28	81388
Beryllium	ND	1.0 ug/L	1 03/25/2015 15:28	81388
Cadmium	ND	1.0 ug/L	1 03/25/2015 15:28	81388
Chromium	ND	2.0 ug/L	1 03/25/2015 15:28	81388
Cobalt	35	1.0 ug/L	1 03/25/2015 15:28	81388
Copper	ND	5.0 ug/L	1 03/25/2015 15:28	81388
Lead	ND	1.0 ug/L	1 03/25/2015 15:28	81388
Nickel	76	1.0 ug/L	1 03/25/2015 15:28	81388
Selenium	ND	5.0 ug/L	1 03/25/2015 15:28	81388
Silver	ND	1.0 ug/L	1 03/25/2015 15:28	81388
Thallium	ND	1.0 ug/L	1 03/25/2015 15:28	81388
Vanadium	ND	5.0 ug/L	1 03/25/2015 15:28	81388
Zinc	15	5.0 ug/L	1 03/25/2015 15:28	81388

Qualifiers:	ND - Not Detected at the Reporting Limit
-------------	--

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- DF Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

04/01/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-7D

Lab ID: P0342-08

Project: Jamestown Landfill, 3/2015 Collection Date: 03/19/15 13:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6020A Metals by ICP-MS				SW6020_W
Antimony	ND	2.0 ug/L	1 03/25/2015 15:33	81388
Arsenic	ND	2.0 ug/L	1 03/25/2015 15:33	81388
Barium	ND	10 ug/L	1 03/25/2015 15:33	81388
Beryllium	ND	1.0 ug/L	1 03/25/2015 15:33	81388
Cadmium	ND	1.0 ug/L	1 03/25/2015 15:33	81388
Chromium	ND	2.0 ug/L	1 03/25/2015 15:33	81388
Cobalt	2.5	1.0 ug/L	1 03/25/2015 15:33	81388
Copper	ND	5.0 ug/L	1 03/25/2015 15:33	81388
Lead	ND	1.0 ug/L	1 03/25/2015 15:33	81388
Nickel	7.7	1.0 ug/L	1 03/25/2015 15:33	81388
Selenium	ND	5.0 ug/L	1 03/25/2015 15:33	81388
Silver	ND	1.0 ug/L	1 03/25/2015 15:33	81388
Thallium	ND	1.0 ug/L	1 03/25/2015 15:33	81388
Vanadium	ND	5.0 ug/L	1 03/25/2015 15:33	81388
Zinc	ND	5.0 ug/L	1 03/25/2015 15:33	81388

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

04/01/2015

Client: GZA GeoEnvironmental Inc.

Client Sample ID: GZ-8

Lab ID: P0342-09

Project:Jamestown Landfill, 3/2015Collection Date:03/20/15 11:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6020A Metals by ICP-MS				SW6020_W
Antimony	ND	2.0 ug/L	1 03/25/2015 15:38	81388
Arsenic	ND	2.0 ug/L	1 03/25/2015 15:38	81388
Barium	63	10 ug/L	1 03/25/2015 15:38	81388
Beryllium	ND	1.0 ug/L	1 03/25/2015 15:38	81388
Cadmium	ND	1.0 ug/L	1 03/25/2015 15:38	81388
Chromium	ND	2.0 ug/L	1 03/25/2015 15:38	81388
Cobalt	2.6	1.0 ug/L	1 03/25/2015 15:38	81388
Copper	ND	5.0 ug/L	1 03/25/2015 15:38	81388
Lead	ND	1.0 ug/L	1 03/25/2015 15:38	81388
Nickel	29	1.0 ug/L	1 03/25/2015 15:38	81388
Selenium	ND	5.0 ug/L	1 03/25/2015 15:38	81388
Silver	ND	1.0 ug/L	1 03/25/2015 15:38	81388
Thallium	ND	1.0 ug/L	1 03/25/2015 15:38	81388
Vanadium	ND	5.0 ug/L	1 03/25/2015 15:38	81388
Zinc	ND	5.0 ug/L	1 03/25/2015 15:38	81388

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

04/01/2015

Client: GZA GeoEnvironmental Inc. Client Sample ID: GZ-9

Lab ID: P0342-10

Project:Jamestown Landfill, 3/2015Collection Date:03/20/15 12:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6020A Metals by ICP-MS				SW6020_W
Antimony	ND	2.0 ug/L	1 03/25/2015 15:43	81388
Arsenic	ND	2.0 ug/L	1 03/25/2015 15:43	81388
Barium	16	10 ug/L	1 03/25/2015 15:43	81388
Beryllium	ND	1.0 ug/L	1 03/25/2015 15:43	81388
Cadmium	ND	1.0 ug/L	1 03/25/2015 15:43	81388
Chromium	ND	2.0 ug/L	1 03/25/2015 15:43	81388
Cobalt	5.8	1.0 ug/L	1 03/25/2015 15:43	81388
Copper	ND	5.0 ug/L	1 03/25/2015 15:43	81388
Lead	1.4	1.0 ug/L	1 03/25/2015 15:43	81388
Nickel	9.8	1.0 ug/L	1 03/25/2015 15:43	81388
Selenium	ND	5.0 ug/L	1 03/25/2015 15:43	81388
Silver	ND	1.0 ug/L	1 03/25/2015 15:43	81388
Thallium	ND	1.0 ug/L	1 03/25/2015 15:43	81388
Vanadium	ND	5.0 ug/L	1 03/25/2015 15:43	81388
Zinc	10	5.0 ug/L	1 03/25/2015 15:43	81388

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

04/01/2015

Client: GZA GeoEnvironmental Inc. Client Sample ID: POT-1

Lab ID: P0342-11

Project:Jamestown Landfill, 3/2015Collection Date:03/20/15 12:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6020A Metals by ICP-MS				SW6020_W
Antimony	ND	2.0 ug/L	1 03/25/2015 15:48	81388
Arsenic	ND	2.0 ug/L	1 03/25/2015 15:48	81388
Barium	ND	10 ug/L	1 03/25/2015 15:48	81388
Beryllium	ND	1.0 ug/L	1 03/25/2015 15:48	81388
Cadmium	ND	1.0 ug/L	1 03/25/2015 15:48	81388
Chromium	ND	2.0 ug/L	1 03/25/2015 15:48	81388
Cobalt	1.4	1.0 ug/L	1 03/25/2015 15:48	81388
Copper	43	5.0 ug/L	1 03/25/2015 15:48	81388
Lead	2.0	1.0 ug/L	1 03/25/2015 15:48	81388
Nickel	3.4	1.0 ug/L	1 03/25/2015 15:48	81388
Selenium	ND	5.0 ug/L	1 03/25/2015 15:48	81388
Silver	ND	1.0 ug/L	1 03/25/2015 15:48	81388
Thallium	ND	1.0 ug/L	1 03/25/2015 15:48	81388
Vanadium	ND	5.0 ug/L	1 03/25/2015 15:48	81388
Zinc	27	5.0 ug/L	1 03/25/2015 15:48	81388

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Spectrum	1 Analytical II	Spectrum Analytical Inc North Kingstown RI		1						Date: 0	Date: 04/01/2015	
P BIENT:		GZA GeoEnvironmental Inc. 2024.7			ANAL	ANALYTICAL QC SUMMARY REPORT	C SUN	IMAR	Y REPC)RT		
Project:		rus42 Jamestown Landfill, 3/2015			5 W 0020_W SW846 6020A	Metals by ICP-MS	SM-					
Sample ID: M	MB-81388	SampType: MBLK	TestCod	TestCode: SW6020_W		Prep Date:	ə: 03/24/15 11:00	5 11:00	Run IC	Run ID: X1_150325A		
Client ID: M	MB-81388	Batch ID: 81388	Units	Units: ug/L		Analysis Date:	e: 03/25/15 14:33	5 14:33	SegNc	SeqNo: 2243032		
Analyte		Result	MDL	RL	SPK value	SPK Ref Val	%REC	%REC LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Antimony		0.2253	0.20	2.0								Ŀ
Arsenic		ND	0.19	2.0								
Barium		AN 1	1.3	10								
Beryllium		CIN CIN	2/0.0	т.0								
Cadmium			0.084 0 16									
Cohalt			0.024	0.1								
Conner			0.23	2.0								
Lead			0.068	1.0								
Nickel		ND	0.17	1.0								
Selenium		UN	0.15	5.0								
Silver		UN	0.022	1.0								
Thallium		0.09890	0.048	1.0								Ŀ
Vanadium		ND	0.61	5.0								
Zinc		ND	0.73	2.0								
Sample ID: L	LCS-81388	SampType: LCS	TestCod	TestCode: SW6020_W		Prep Date:		03/24/15 11:00	Run IC	Run ID: X1_150325A		
Client ID: L	LCS-81388	Batch ID: 81388	Units	Units: ug/L		Analysis Date:	e: 03/25/15 14:38	5 14:38	SegNc	SeqNo: 2243033		
Analyte		Result	MDL	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Antimonv		104.3	0.20	2.0	100.0	0	104	80	120	0		В
Arsenic		42.22	0.19	2.0	40.00	0	106	80	120	0		
Barium		2047	1.3	10	2000	0	102	80	120	0		
Beryllium		52.53	0.072	1.0	50.00	0	105	80	120	0		
Cadmium		51.42	0.084	1.0	50.00	0 0	103	80	120	0 0		
Chromium Cobolt		509.3 503 2	0.024	0.7	200.0		COT		001			
Conner		265.9	0.23	2.0	250.0	0	106	80	120	0 0		
Lead		20.88	0.068	1.0	20.00	0	104	80	120	0		
Nickel		515.4	0.17	1.0	500.0	0	103	80	120	0		
Selenium		53.13	0.15	5.0	50.00	0	106	80	120	0		
Silver		52.84	0.022	1.0	50.00	0	106	80	120	0		
		52.61	0.048	1.0	50.00	0	105	80	120	0		В
Va hadium		504.9	0.61	5.0	500.0	0	101	80	120	0		
≊ 16 o		9.12d	£7.0	7.0	0.006	D	90T	08	120	5		
G alifiers:	ND - Not Detected at the MDL	he MDL	S - Recovery out	S - Recovery outside accepted recovery limits		MDL - Method Detection Limit	imit		B - Ar	nalyte detected in th	B - Analyte detected in the associated Method Blank	Blank
m15.03.22.2229	J - Analyte detected be	J - Analyte detected below quantitation limits	R - RPD outside	R - RPD outside accented recovery limits		RL - Reporting Limit						
						and an address						

err. F0312 Jamescona Landfill, 3:2015 SW6600.LW SW666 (620A - Metals by ICP-MS Lamescona Landfill, 3:2015 SW600.LW SW646 (620A - Metals by ICP-MS Prop. Disc. SW2451 1:00 LCSD51388 Samp1'per LCSD TestCode SW020.LW Ambiss bar. S2491 51:01 LCSD51384 Barn ID, 81388 Units. ug/L SPK and M SREC Louinn Haphtin LCSD51384 Barn ID, 81388 Units. ug/L SPK and M SREC Louinn Haphtin LCSD51384 Barn ID, 81388 Units. ug/L SPK and M SREC Louinn Haphtin LCSD51384 Samp1'pre. LCSD 0.10 0 100 0 100 1013 0.10 NUL RL SPK and M SREC Louinn Haphtin 1013 0.10 0.10 0.10 0.10 0.10 100 2014 1010 0.10 0.10 0.10 0.10 100 100 2015 0.10 0.10 0.10 0.10 0.10 100 100 100 2016 0.10 0.10 0.10	CLIENT:		GZA GeoEnvironmental Inc.			ANAL Y	TICAL O		UMAR	V REP	ORT			
tettJamestown Landfill, 37:01SW346 $\overline{0.0004}$ - Metals by ICP-MSnoiseSampTyne, LGSTateClosic SW600.WMetalMetalMetalnoiseSampTyne, LGSUnise, upLAmpSing DateCo2515 14:43noiseBarch ID, 6138MoLRLSm77 (scillable)MetalnoiseSampTyne, LGSUnise, upLSm77 (scillable)MetalMetalnoiseSampTyne, LGSUnise, upLSm77 (scillable)Sm2415 14:43noiseSampTyne, LGSUnise, upLSm27 (scillable)Sm2415 14:43noiseSampTyne, LGSSm2412 10Sm2415 14:43noiseSu231 2000Su231 2000Su231 21:43Su231 21:43noiseSu231 2000Su231 2000Su231 21:43Su231 21:44noiseSu231 21:43Su231 21:44Su231 21:44noiseSu231 21:43Su231 21:44Su231 21:44noiseSu231 21:43Su231 21:44Su231 21:44noiseSu231 21:44Su231 21:44Su231 21:44noiseSu232 11:45Noise Su2Su231 21:44noiseSu232 11:45Noise Su231 21:44Su231 21:44noiseSu232 11:45Noise Su231 21:44Su231 21:44	Webrk Ord	er:			S	W6020 W		1))			 			
(a): Califoldi (Cab) TenClose: SWERD(A) Frep Date: Calif (1:0) (b): (CSD-5138) Samitylyse: (LSD) Units: upl. Calif (1:0) Calif (1:0) Calif (1:0) (c): (CSD-5138) Barth ID: 5138 Units: upl. Factor (2:0) Calif (1:0)	Project:		1 Landfill, 3/2015		2 2	1	Metals by ICP	SM-						
(1) (125)-61385 Main		LCSD-81388	SampType: LCSD	TestCo	de: SW6020_W		Prep Date:		5 11:00	Run	Run ID: X1_150325A			
eta MDL RL RL SPK relie <		LCSD-81388	Batch ID: 81388	Unit	s: ug/L		Analysis Date:		5 14:43	Seq	SeqNo: 2243034			
mot 113.3 0.20 2.0 0.00 0 103 80 120 m 113.3 0.13 1.0 2.00 0 105 80 120 m 51.6 0.03 1.0 200 0 120 80 120 m 51.6 0.034 1.0 50.00 0 100 0 105 80 120 m 51.0 0.034 1.0 50.00 0 100 </th <th>Analyte</th> <th></th> <th>Result</th> <th>MDL</th> <th>RL</th> <th>SPK value</th> <th>SPK Ref Val</th> <th>%REC</th> <th></th> <th>HighLimit</th> <th>RPD Ref Val</th> <th>%RPD RPDLimit</th> <th>RDLimit</th> <th>Qual</th>	Analyte		Result	MDL	RL	SPK value	SPK Ref Val	%REC		HighLimit	RPD Ref Val	%RPD RPDLimit	RDLimit	Qual
(1, 1) $(1, 1)$	Antimony		103.2	0.20	2.0	100.0	0	103	80	120	104.3	1.11	20	в
m 23.6 1.3 10 2000 0 103 80 120 m 51.16 0.073 1.0 50.00 0 105 80 100 m 51.12 0.034 1.0 50.00 0 102 80 100 m 51.2 0.034 1.0 50.00 0 103 80 100 m 50.3 0.048 1.0 50.00 0 103 80 100 m 51.3 0.15 1.0 50.00 0 103 80 100 m 51.3 0.15 1.0 50.00 0 101 80 100 m 50.3 0.13 1.0 50.00 0 101 80 100 m 50.0 0.13 1.0 50.00 0 101 80 100 m 50.0 0.13 1.0 50.00 0 101 101	Arsenic		41.83	0.19	2.0	40.00	0	105	80	120	42.22	0.926	20	
Im 52.69 0.072 1.0 50.00 0 102 80 100 Im 51.12 0.084 1.0 50.00 0 102 80 100 Im 210.0 0.034 1.0 50.00 0 107 80 100 Im 20.69 0.034 1.0 50.00 0 107 80 100 S7.25 0.046 1.0 50.00 0 101	Barium		2069	1.3	10	2000	0	103	80	120	2047	1.06	20	
Imm 51.12 0.084 1.0 50.00 0 102 80 120 Imm 50.0 0.15 2.0 50.0 0 103 80 120 Imm 50.0 0.13 1.0 50.0 0 103 80 120 Imm 51.4 0.17 1.0 50.0 0 103 80 120 Imm 51.3 0.034 1.0 50.0 0 103 80 120 Imm 51.3 0.044 1.0 50.0 0 101 10 101	Beryllium		52.69	0.072	1.0	50.00	0	105	80	120	52.53	0.306	20	
num 210.0 0.16 2.0 200.0 0 107 80 120 r 267.2 0.234 1.0 50.00 0 107 60 107 60 120 n 57.2 0.234 1.0 50.00 0 107 60 120 n 53.2.6 0.028 1.0 50.00 0 107 60 120 n 53.2.3 0.032 1.0 50.00 0 107 60 120 n 53.2.3 0.032 1.0 50.00 0 107 60 120 n 53.2.3 0.043 1.0 50.00 0 107 60 120 n 53.63 0.12 1.0 50.00 0 101 100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101	Cadmium		51.12	0.084	1.0	50.00	0	102	80	120	51.42	0.583	20	
t 508.8 0.024 1.0 500.0 0 102 80 20 i 518.4 0.13 1.0 50.00 0 103 80 120 ii 518.4 0.13 1.0 50.00 0 103 80 120 iii 518.4 0.13 1.0 50.00 0 103 80 120 iiii 51.28 0.052 1.0 50.00 0 103 80 120 iiii 50.00 0.01 1.0 50.00 0 101 10 </td <td>Chromium</td> <td></td> <td>210.0</td> <td>0.16</td> <td>2.0</td> <td>200.0</td> <td>0</td> <td>105</td> <td>80</td> <td>120</td> <td>209.3</td> <td>0.352</td> <td>20</td> <td></td>	Chromium		210.0	0.16	2.0	200.0	0	105	80	120	209.3	0.352	20	
If $207, 2$ 0.72 </td <td>Cobalt</td> <td></td> <td>508.8</td> <td>0.024</td> <td>1.0</td> <td>500.0</td> <td>0 0</td> <td>102</td> <td>80</td> <td>120</td> <td>502.3</td> <td>1.29</td> <td>20</td> <td></td>	Cobalt		508.8	0.024	1.0	500.0	0 0	102	80	120	502.3	1.29	20	
Interpretend 51.00 0.000	Copper		267.2	0.23	2.0	250.0		107	080	120	265.9	0.489	20	
Interpretation 53.30 55.2 0.15 0.01 5.0 50.00 0.01 100 0.02 100 0.02 100 0.02 100 0.02 100	Nichol		518 4	0.000				401 401	00 00	120 120	20.00 515 4	202.0 2995.0	07	
International conditional conditina condinal conditional conditional conditional conditiona	Salanium		53.30	0.15	0.0	50.00		107	00	120	53.13	0.317	20	
Im 52.22 0.048 1.0 50.00 0 104 80 120 Bund 55.23 0.051 0.0 0 101 80 120 Bund 55.2 0.01 50.00 0 101	Silver		51.28	0.022	1.0	50.00	0	103	80	120	52.84	3.01	20	
lith 565.3 0.61 5.0 50.0 0 101 80 120 loc 10 535.2 0.73 2.0 500.0 0 107 80 120 loc 11 Batch 10: 8138 TestCode: SW6020_W Analysis Date 0.7315 15:4 0.7315 15:4 loc 11 Batch 10: 8138 Units: ug/L RP pate 0.22/15 15:4 Analysis Date 0.22/15 15:4 loc 11 ND 10 10 10 0 0 0 0 0 now ND 10 10 10 0 <td>Thallium</td> <td></td> <td>52.22</td> <td>0.048</td> <td>1.0</td> <td>50.00</td> <td>0</td> <td>104</td> <td>80</td> <td>120</td> <td>52.61</td> <td>0.744</td> <td>20</td> <td>Ю</td>	Thallium		52.22	0.048	1.0	50.00	0	104	80	120	52.61	0.744	20	Ю
integration integratediatediatediatedintedination	Vanadium		505.3	0.61	5.0	500.0	0	101	80	120	504.9	0.0729	20	
old ID:Ford 23-11BSDSamp Type:Samp Type:Samp Type:Sold 715 11:00r ID:Pord 2-11BSDBatch ID:81388Units:Units:Analysis Date: 022415 15:54r ID:Pord 1Batch ID:81388Units:Units: $IIICIIICIIICIIICr ID:Batch ID:81388Units:Units:IIICIIICIIICIIICIIICIIICr ID:NID1010101000000r ID:NID5.05.05.0000000r ID:NID5.05.05.00000000r ID:NID5.05.05.000000000r ID:NID5.05.05.000000000r ID:NID5.05.05.000000000r ID:NID5.05.05.0000000000r ID:NID5.05.05.000000000000000000000000000000000000$	Zinc		535.2	0.73	2.0	500.0	0	107	80	120	531.9	0.607	20	
ID: Batch ID: 81385 Units: ug/L Analysis Date: 202515 15::4 ie Result MDL R. R. Diff. Ref Alalysis Date: 202515 15::4 ie Result MDL R. R. Result MDL Ref Ref Alalysis Date: 202515 15::4 in 10 10 10 10 10 0		P0342-11BSD	SampType: SD	TestCα	te: SW6020_W		Prep Date:		5 11:00	Run	Run ID: X1_150325A			
ich Result MDL RL SPK value SPK Ref Val MSL oviv ND 10 10 0		POT-1	Batch ID: 81388	Unit	s: ug/L		Analysis Date:		15 15:54	SeqNo:	No: 2243048			
ory ND 10 10 0 <th>Analyte</th> <th></th> <th>Result</th> <th>MDL</th> <th>RL</th> <th>SPK value</th> <th>SPK Ref Val</th> <th>%REC</th> <th>LowLimit F</th> <th>HiahLimit</th> <th>RPD Ref Val</th> <th>%RPD RPDLimit</th> <th>RPDLimit</th> <th>Qual</th>	Analyte		Result	MDL	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HiahLimit	RPD Ref Val	%RPD RPDLimit	RPDLimit	Qual
0.0 10 10 10 0 <td>Antimony</td> <td></td> <td>QN</td> <td>10</td> <td>10</td> <td>C</td> <td>0</td> <td>С</td> <td>C</td> <td>0</td> <td>C</td> <td>C</td> <td>10</td> <td></td>	Antimony		QN	10	10	C	0	С	C	0	C	C	10	
m ND 50 50 0	Arsenic		- AN	10	10	0	0	0	0	0	0	0	10	
um ND 5.0 5.0 5.0 0	Barium		UN	50	50	0	0	0	0	0	0	0	10	
inim ND 5.0 5.0 0	Beryllium		ND	5.0	5.0	0	0	0	0	0	0	0	10	
nim ND 10 10 0 0 0 t ND 5.0 5.0 5.0 0 0 0 ar ND 5.0 5.0 0 0 0 0 ar ND 5.0 5.0 0 0 0 0 ar ND 5.0 5.0 0 0 0 0 n ND 5.0 5.0 0 0 0 0 n ND 25 25 0 0 0 0 n ND 5.0 5.0 0 0 0 0 n ND 25 25 0 0 0 0 and ND 25 25 0 0 0 0 and ND 25 25 0 0 0 0 and 28.88 25 25 0 0 0 0 and ND 0 0 0 0 0 0 and ND 25 25 0 0 0 0	Cadmium		ND	5.0	5.0	0	0	0	0	0	0	0	10	
t ND 5.0 5.0 0 0 0 0 er ND 5.0 5.0 0 0 0 0 l ND 5.0 5.0 0 0 0 0 0 l ND 5.0 5.0 0 0 0 0 0 l ND 10 5.0 5.0 0 0 0 0 n ND 25 25 0 0 0 0 0 lim ND 25 25 0 0 0 0 0 lim ND 25 25 0 0 0 0 0 lim ND 25 25 0 0 0 0 0	Chromium		ND	10	10	0	0	0	0	0	0	0	10	
Image: Minipolation for the form of the form o	Cobalt		ND	5.0	5.0	0	0	0	0	0	1.404		10	
Index 5.0 5.0 5.0 0 0 0 0 0 Index ND 5.0 5.0 5.0 0 0 0 0 0 0 Index ND 5.0 5.0 0 0 0 0 0 0 0 Index ND 5.0 5.0 0 0 0 0 0 0 0 Index ND 5.0 5.0 0 0 0 0 0 0 0 0 0 Index ND 5.0 5.0 0	Copper		44.85	25	25	0	0	0	0	0	42.52	5.33	10	
Image: ND ND 5.0 5.0 0	Lead		UN I	5.0	. 0 . 0	0 0	0 0	0 0	0 0	0 0	2.016	0 0	10	
Imm ND 25 25 25 0 0 0 0 0 0 0 Imm ND 5.0 5.0 5.0 0	Nickel			ۍ. ر	5°.0	5 0	5 0	0 0	D (0 0	3.392	D (D T T	
Image: ND ND 5.0 5.0 0	Selenium		ON A	с 7 С	2 ک ۲				0 0	5 0			10 F	
Jium ND 25 25 0 0 0 0 Jium 28.88 25 25 0 0 0 0 Ifers: ND - Not Detected at the MDL S - Recovery outside accepted recovery limits MDL - Method Detection Limit	Thallium			о. С										
28.88 25 25 25 0 0 0 0 ifiers: ND - Not Detected at the MDL S - Recovery outside accepted recovery limits MDL - Method Detection Limit	Vanadium			с. С. С.	о. С. С. С.								010	
ifiers: ND - Not Detected at the MDL S - Recovery outside accepted recovery limits MDL - Method Detection Limit			28 88	с г С	с л С С						26 91	7 09		
ifiers: ND - Not Detected at the MDL S - Recovery outside accepted recovery limits	ģe))	5)	0	0	0		•) H	
ND - Not Detected at the MDL S - Recovery outside accepted recovery limits	47													
ND - Not Detected at the MDL S - Recovery outside accepted recovery limits	of 6			5						,				
	O valifiers:	ND - Not Detected a	t the MDL	S - Recovery o	utside accepted recove	mits	Method Detection Li	imit		B - /	- Analyte detected in the associated Method Blank	the associate	d Method B	lank
m15/03/22229 J - Analyte detected below quanititation limits R - RPD outside accepted recovery limits RL - Reporting Limit	m15.03.22.2229	J - Analyte detected ł	below quanititation limits	R - RPD outsic	le accepted recovery lin		porting Limit							

Report Date: 31-Mar-15 16:37

Final ReportRe-Issued ReportRevised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

Spectrum Analytical, Inc. 646 Camp Ave. North Kingstown, RI 02852 Attn: Edward Lawler

Project: Jamestown Landfill, 3/2015 Project #: P0342

Laboratory ID	<u>Client Sample ID</u>	<u>Matrix</u>	Date Sampled	Date Received
SC04721-01	POT-1	Aqueous	20-Mar-15 12:30	23-Mar-15 16:23

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

ficole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 11 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the RDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received -0.8 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 353.2

Samples:

SC04721-01 POT-1

The Reporting Limit has been raised to account for matrix interference.

Nitrate/Nitrite as N

EPA 524.2

Calibration:

1503047

Analyte quantified by quadratic equation type calibration.

1,1,2,2-Tetrachloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Hexachlorobutadiene Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene sec-Butylbenzene Styrene tert-Butylbenzene

This affected the following samples:

1505317-BLK1 1505317-BS1 POT-1 S502235-ICV1 S502477-CCV1

S502235-ICV1

Analyte percent recovery is outside individual acceptance criteria (80-120).

Dichlorodifluoromethane (Freon12) (79%) m,p-Xylene (123%)

EPA 524.2

Calibration:

S502235-ICV1

This affected the following samples:

1505317-BLK1 1505317-BS1 POT-1 S502477-CCV1

Laboratory Control Samples:

1505317 BS

1,1-Dichloroethene percent recovery 76 (80-120) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

POT-1

Hexachlorobutadiene percent recovery 123 (80-120) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

POT-1

Methylene chloride percent recovery 73 (80-120) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

POT-1

Vinyl chloride percent recovery 69 (80-120) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

POT-1

Samples:

S502477-CCV1

Analyte percent difference is outside individual acceptance criteria (30), but within overall method allowances.

Vinyl chloride (-31.0%)

This affected the following samples:

1505317-BLK1 1505317-BS1 POT-1

Sample Acceptance Check Form

Client:	Spectrum Analytical, Inc North Kingstown, RI
Project:	Jamestown Landfill, 3/2015 / P0342
Work Order:	SC04721
Sample(s) received on:	3/23/2015

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	<u>No</u>
Were custody seals present?		\checkmark
Were custody seals intact?		
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark	
Were samples refrigerated upon transfer to laboratory representative?	\checkmark	
Were sample containers received intact?	\checkmark	
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark	
Were samples accompanied by a Chain of Custody document?	\checkmark	
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?		
Did sample container labels agree with Chain of Custody document?	\checkmark	
Were samples received within method-specific holding times?	\checkmark	

$\overline{\mathbf{A}}$	

N/A

<u>Sample Id</u> POT-1 SC04721-	lentification -01			<u>Client F</u> P03	<u>Project #</u> 342		<u>Matrix</u> Aqueous		lection Date)-Mar-15 12			<u>eceived</u> Mar-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Purgeable	e Organic Compounds												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 0.50	U	µg/l	0.50	0.35	1	EPA 524.2	25-Mar-15	25-Mar-15	GMA	1505317	
67-64-1	Acetone	< 10.0	U	µg/l	10.0	0.98	1	"	"		"	"	
107-13-1	Acrylonitrile	< 0.50	U	µg/l	0.50	0.25	1	"	"		"	"	
71-43-2	Benzene	< 0.50	U	µg/l	0.50	0.17	1	"	"		"	"	
108-86-1	Bromobenzene	< 0.50	U	µg/l	0.50	0.11	1	"	"		"	"	
74-97-5	Bromochloromethane	< 0.50	U	µg/l	0.50	0.13	1	"	"	"	"	"	
75-27-4	Bromodichloromethane	< 0.50	U	µg/l	0.50	0.18	1	"	"		"	"	
75-25-2	Bromoform	< 0.50	U	µg/l	0.50	0.29	1	"	"		"	"	
74-83-9	Bromomethane	< 0.50	U	µg/l	0.50	0.36	1	"	"	"	"	"	
78-93-3	2-Butanone (MEK)	< 10.0	U	µg/l	10.0	0.58	1	"	"	"	"	"	
104-51-8	n-Butylbenzene	< 0.50	U	µg/l	0.50	0.26	1	"	"		"		
135-98-8	sec-Butylbenzene	< 0.50	U	µg/l	0.50	0.16	1	"	"		"		
98-06-6	tert-Butylbenzene	< 0.50	U	µg/l	0.50	0.21	1	"	"		"		
75-15-0	Carbon disulfide	< 0.50	U	µg/l	0.50	0.25	1	"	"		"		
56-23-5	Carbon tetrachloride	< 0.50	U	µg/l	0.50	0.23	1	"	"		"		
108-90-7	Chlorobenzene	< 0.50	U	µg/l	0.50	0.20	1	"	"		"		
75-00-3	Chloroethane	< 0.50	U	µg/l	0.50	0.31	1	"	"		"		
67-66-3	Chloroform	< 0.50	U	µg/l	0.50	0.19	1	"	"		"		
74-87-3	Chloromethane	< 0.50	U	µg/l	0.50	0.34	1	"	"		"		
95-49-8	2-Chlorotoluene	< 0.50	U	µg/l	0.50	0.17	1	"	"		"	"	
106-43-4	4-Chlorotoluene	< 0.50	U	µg/l	0.50	0.20	1	"	"		"		
96-12-8	1,2-Dibromo-3-chloroprop ane	< 0.50	U	µg/l	0.50	0.48	1	"	"	"	"	"	
124-48-1	Dibromochloromethane	< 0.50	U	µg/l	0.50	0.24	1	"	"		"		
106-93-4	1,2-Dibromoethane (EDB)	< 0.50	U	µg/l	0.50	0.16	1	"	"		"		
74-95-3	Dibromomethane	< 0.50	U	µg/l	0.50	0.19	1	"	"		"	"	
95-50-1	1,2-Dichlorobenzene	< 0.50	U	µg/l	0.50	0.15	1	"	"		"		
541-73-1	1,3-Dichlorobenzene	< 0.50	U	µg/l	0.50	0.22	1	"	"		"		
106-46-7	1,4-Dichlorobenzene	< 0.50	U	µg/l	0.50	0.25	1	"	"		"	"	
75-71-8	Dichlorodifluoromethane (Freon12)	1.09		µg/l	0.50	0.49	1	u	"	"	"	"	
75-34-3	1,1-Dichloroethane	0.22	J	µg/l	0.50	0.17	1	"	"		"	"	
107-06-2	1,2-Dichloroethane	< 0.50	U	µg/l	0.50	0.15	1	"	"		"	"	
75-35-4	1,1-Dichloroethene	< 0.50	U	µg/l	0.50	0.28	1	"	"		"	"	
156-59-2	cis-1,2-Dichloroethene	< 0.50	U	µg/l	0.50	0.20	1	"	"		"		
156-60-5	trans-1,2-Dichloroethene	< 0.50	U	µg/l	0.50	0.21	1	"	"		"	"	
78-87-5	1,2-Dichloropropane	< 0.50	U	µg/l	0.50	0.15	1	"	"		"	"	
142-28-9	1,3-Dichloropropane	< 0.50	U	µg/l	0.50	0.22	1	"	"		"	"	
594-20-7	2,2-Dichloropropane	< 0.50	U	µg/l	0.50	0.36	1	"	"		"	"	
563-58-6	1,1-Dichloropropene	< 0.50	U	µg/l	0.50	0.28	1	"	"		"	"	
10061-01-5	cis-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.18	1	"	"		"	"	
10061-02-6	trans-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.20	1	"	"		"	"	
100-41-4	Ethylbenzene	< 0.50	U	µg/l	0.50	0.17	1	"	"		"	"	
87-68-3	Hexachlorobutadiene	< 0.50	U	µg/l	0.50	0.40	1	"	"		"	"	
591-78-6	2-Hexanone (MBK)	< 10.0	U	µg/l	10.0	0.54	1	"		u	"	"	

This laboratory report is not valid without an authorized signature on the cover page.

Sample Id POT-1 SC04721	-01				<u>Project #</u> 342		<u>Matrix</u> Aqueous		ection Date)-Mar-15 12			<u>ceived</u> Mar-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	organic Compounds												
Purgeable	e Organic Compounds												
98-82-8	Isopropylbenzene	< 0.50	U	µg/l	0.50	0.24	1	EPA 524.2	25-Mar-15	25-Mar-15	GMA	1505317	
99-87-6	4-Isopropyltoluene	< 0.50	U	µg/l	0.50	0.22	1	"	"	"	"	"	
1634-04-4	Methyl tert-butyl ether	< 0.50	U	µg/l	0.50	0.13	1	"	"	"	"	"	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0	U	µg/l	10.0	0.26	1	n	"	"	"	"	
75-09-2	Methylene chloride	< 0.50	U	µg/l	0.50	0.21	1	"	"	"		"	
91-20-3	Naphthalene	< 0.50	U	μg/l	0.50	0.40	1	"	"	"	"	"	
103-65-1	n-Propylbenzene	< 0.50	U	µg/l	0.50	0.22	1	"	"	"	"	"	
100-42-5	Styrene	< 0.50	U	µg/l	0.50	0.18	1	"	"	"	"	"	
630-20-6	1,1,1,2-Tetrachloroethane	< 0.50	U	μg/l	0.50	0.24	1	"	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	< 0.50	U	μg/l	0.50	0.32	1	"	"	"	"	"	
127-18-4	Tetrachloroethene	< 0.50	U	µg/l	0.50	0.39	1	"	"	"	"	"	
108-88-3	Toluene	< 0.50	U	µg/l	0.50	0.33	1	"	"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	< 0.50	U	µg/l	0.50	0.14	1	"	"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	< 0.50	U	µg/l	0.50	0.38	1	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 0.50	U	µg/l	0.50	0.21	1	"	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	< 0.50	U	µg/l	0.50	0.18	1	"	"	"		"	
79-01-6	Trichloroethene	< 0.50	U	µg/l	0.50	0.38	1	"	"	"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	< 0.50	U	µg/l	0.50	0.49	1	"	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	< 0.50	U	µg/l	0.50	0.18	1	"	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	< 0.50	U	µg/l	0.50	0.27	1	"	"	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	< 0.50	U	µg/l	0.50	0.21	1	"	"	"	"	"	
75-01-4	Vinyl chloride	< 0.50	U	µg/l	0.50	0.34	1	"	"	"	"	"	
179601-23-1	¹ m,p-Xylene	< 0.50	U	µg/l	0.50	0.38	1	"	"	"	"	"	
95-47-6	o-Xylene	< 0.50	U	µg/l	0.50	0.21	1	"	"	"	"	"	
109-99-9	Tetrahydrofuran	0.87	J	µg/l	2.00	0.38	1	"	"	"	"	"	
994-05-8	Tert-amyl methyl ether	< 0.50	U	µg/l	0.50	0.24	1	"	"	"	"	"	
637-92-3	Ethyl tert-butyl ether	< 0.50	U	µg/l	0.50	0.14	1	"	"	"	"	"	
108-20-3	Di-isopropyl ether	< 0.50	U	µg/l	0.50	0.16	1	"	"	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 10.0	U	µg/l	10.0	2.29	1	"	u	"	"	u	
	recoveries:												
460-00-4	4-Bromofluorobenzene	90			80-12			"	"	"	"	"	
2037-26-5	Toluene-d8	100			80-12	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	100			80-12	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	106			80-12	0 %		"	"	"	"	"	
General C	Chemistry Parameters												
	Nitrate/Nitrite as N	< 0.500	R01, U, D	mg/l	0.500	0.472	50	EPA 353.2	27-Mar-15	27-Mar-15	RLT	1505511	Х

Volatile Organic Compounds - Quality Control

naluta(a)	D age-14	Ele -	I Init-	*יים	Spike	Source	0/ DEC	%REC	רותם	RPD Limi
.nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1505317 - SW846 5030 Water MS										
<u>Blank (1505317-BLK1)</u>					Pre	epared & Ar	nalyzed: 25	-Mar-15		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 0.50	U	µg/l	0.50						
Acetone	< 10.0	U	µg/l	10.0						
Acrylonitrile	< 0.50	U	µg/l	0.50						
Benzene	< 0.50	U	µg/l	0.50						
Bromobenzene	< 0.50	U 	µg/l	0.50						
Bromochloromethane	< 0.50	U	µg/l	0.50						
Bromodichloromethane	< 0.50	U	µg/l	0.50						
Bromoform	< 0.50	U	µg/l	0.50						
Bromomethane	< 0.50	U	µg/l	0.50						
2-Butanone (MEK)	< 10.0	U	µg/l	10.0						
n-Butylbenzene	< 0.50	U	µg/l	0.50						
sec-Butylbenzene	< 0.50	U	µg/l	0.50						
tert-Butylbenzene	< 0.50	U U	µg/l	0.50						
Carbon disulfide Carbon tetrachloride	< 0.50 < 0.50	U	µg/l	0.50 0.50						
Chlorobenzene	< 0.50 < 0.50	U	µg/l	0.50						
Chloroethane	< 0.50	U	µg/l µg/l	0.50						
Chloroform	< 0.50 < 0.50	U		0.50						
Chloromethane	< 0.50	U	µg/l µg/l	0.50						
2-Chlorotoluene	< 0.50	U	μg/l	0.50						
4-Chlorotoluene	< 0.50	U	µg/l	0.50						
1,2-Dibromo-3-chloropropane	< 0.50	U	μg/l	0.50						
Dibromochloromethane	< 0.50	U	μg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50	U	μg/l	0.50						
Dibromomethane	< 0.50	U	μg/l	0.50						
1,2-Dichlorobenzene	< 0.50	U	μg/l	0.50						
1,3-Dichlorobenzene	< 0.50	U	µg/l	0.50						
1,4-Dichlorobenzene	< 0.50	U	µg/l	0.50						
Dichlorodifluoromethane (Freon12)	< 0.50	U	µg/l	0.50						
1,1-Dichloroethane	< 0.50	U	µg/l	0.50						
1,2-Dichloroethane	< 0.50	U	µg/l	0.50						
1,1-Dichloroethene	< 0.50	U	µg/l	0.50						
cis-1,2-Dichloroethene	< 0.50	U	μg/l	0.50						
trans-1,2-Dichloroethene	< 0.50	U	μg/l	0.50						
1,2-Dichloropropane	< 0.50	U	μg/l	0.50						
1,3-Dichloropropane	< 0.50	U	μg/l	0.50						
2,2-Dichloropropane	< 0.50	U	μg/l	0.50						
1,1-Dichloropropene	< 0.50	U	μg/l	0.50						
cis-1,3-Dichloropropene	< 0.50	U	µg/l	0.50						
trans-1,3-Dichloropropene	< 0.50	U	μg/l	0.50						
Ethylbenzene	< 0.50	U	µg/l	0.50						
Hexachlorobutadiene	< 0.50	U	µg/l	0.50						
2-Hexanone (MBK)	< 10.0	U	µg/l	10.0						
Isopropylbenzene	< 0.50	U	µg/l	0.50						
4-Isopropyltoluene	< 0.50	U	µg/l	0.50						
Methyl tert-butyl ether	< 0.50	U	µg/l	0.50						
4-Methyl-2-pentanone (MIBK)	< 10.0	U	µg/l	10.0						
Methylene chloride	< 0.50	U	µg/l	0.50						
Naphthalene	< 0.50	U	µg/l	0.50						
n-Propylbenzene	< 0.50	U	µg/l	0.50						
Styrene	< 0.50	U	µg/l	0.50						
1,1,1,2-Tetrachloroethane	< 0.50	U	µg/l	0.50						

This laboratory report is not valid without an authorized signature on the cover page.

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1505317 - SW846 5030 Water MS										
Blank (1505317-BLK1)					Pre	pared & Ar	nalyzed: 25-	<u>Mar-15</u>		
1,1,2,2-Tetrachloroethane	< 0.50	U	µg/l	0.50						
Tetrachloroethene	< 0.50	U	μg/l	0.50						
Toluene	< 0.50	U	μg/l	0.50						
1,2,3-Trichlorobenzene	< 0.50	U	μg/l	0.50						
1,2,4-Trichlorobenzene	< 0.50	U	µg/l	0.50						
1,1,1-Trichloroethane	< 0.50	U	µg/l	0.50						
1,1,2-Trichloroethane	< 0.50	U	µg/l	0.50						
Trichloroethene	< 0.50	U	µg/l	0.50						
Trichlorofluoromethane (Freon 11)	< 0.50	U	µg/l	0.50						
1,2,3-Trichloropropane	< 0.50	U	µg/l	0.50						
1,2,4-Trimethylbenzene	< 0.50	U	µg/l	0.50						
1,3,5-Trimethylbenzene	< 0.50	U	µg/l	0.50						
Vinyl chloride	< 0.50	U	µg/l	0.50						
m,p-Xylene	< 0.50	U	µg/l	0.50						
o-Xylene	< 0.50	U	µg/l	0.50						
Tetrahydrofuran	< 2.00	U	µg/l	2.00						
Tert-amyl methyl ether	< 0.50	U	µg/l	0.50						
Ethyl tert-butyl ether	< 0.50	U	µg/l	0.50						
Di-isopropyl ether	< 0.50	U	µg/l	0.50						
Tert-Butanol / butyl alcohol	< 10.0	U	µg/l	10.0						
Surrogate: 4-Bromofluorobenzene	44.0		µg/l		50.0		88	80-120		
Surrogate: Toluene-d8	50.7		µg/l		50.0		101	80-120		
Surrogate: 1,2-Dichloroethane-d4	49.8		µg/l		50.0		100	80-120		
Surrogate: Dibromofluoromethane	51.5		µg/l		50.0		103	80-120		
LCS (1505317-BS1)					Pre	pared & Ar	nalyzed: 25-	<u>Mar-15</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	17.5		µg/l		20.0		87	80-120		
Acetone	14.3		µg/l		20.0		71	70-130		
Acrylonitrile	16.4		µg/l		20.0		82	70-130		
Benzene	21.0		µg/l		20.0		105	80-120		
Bromobenzene	22.2		µg/l		20.0		111	80-120		
Bromochloromethane	20.6		µg/l		20.0		103	80-120		
Bromodichloromethane	19.3		µg/l		20.0		97	80-120		
Bromoform	22.3		µg/l		20.0		112	80-120		
Bromomethane	16.3		µg/l		20.0		82	80-120		
2-Butanone (MEK)	18.3		µg/l		20.0		91	70-130		
n-Butylbenzene	23.5		µg/l		20.0		118	80-120		
sec-Butylbenzene	22.6		µg/l		20.0		113	80-120		
tert-Butylbenzene	22.2		µg/l		20.0		111	80-120		
Carbon disulfide	15.2		µg/l		20.0		76	70-130		
Carbon tetrachloride	20.9		µg/l		20.0		104	80-120		
Chlorobenzene	21.2		µg/l		20.0		106	80-120		
Chloroethane	16.0		µg/l		20.0		80	80-120		
Chloroform	18.8		µg/l		20.0		94	80-120		
Chloromethane	16.5 22.6		µg/l		20.0		82	80-120		
2-Chlorotoluene	23.6		µg/l		20.0		118 110	80-120 80-120		
4-Chlorotoluene	23.8		µg/l		20.0		119	80-120		
1,2-Dibromo-3-chloropropane	21.0		µg/l		20.0		105 105	80-120 80-120		
Dibromochloromethane	21.0		µg/l		20.0		105	80-120		
1,2-Dibromoethane (EDB)	19.9		µg/l		20.0		100	80-120		
Dibromomethane	19.2		µg/l		20.0		96 107	80-120		
1,2-Dichlorobenzene	21.4		µg/l		20.0		107	80-120		

Volatile Organic Compounds - Quality Control

naluta(a)	Dagult	Floo	Unita	*11	Spike	Source	0/DEC	%REC	רוקק	RPE
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
atch 1505317 - SW846 5030 Water MS										
LCS (1505317-BS1)					Pre	epared & Ar	nalyzed: 25-	Mar-15		
1,3-Dichlorobenzene	21.4		µg/l		20.0		107	80-120		
1,4-Dichlorobenzene	20.4		µg/l		20.0		102	80-120		
Dichlorodifluoromethane (Freon12)	18.5		µg/l		20.0		92	80-120		
1,1-Dichloroethane	19.0		µg/l		20.0		95	80-120		
1,2-Dichloroethane	17.9		µg/l		20.0		90	80-120		
1,1-Dichloroethene	15.1	QC2	µg/l		20.0		76	80-120		
cis-1,2-Dichloroethene	21.0		µg/l		20.0		105	80-120		
trans-1,2-Dichloroethene	20.9		µg/l		20.0		105	80-120		
1,2-Dichloropropane	19.1		µg/l		20.0		96	80-120		
1,3-Dichloropropane	19.0		µg/l		20.0		95	80-120		
2,2-Dichloropropane	21.9		µg/l		20.0		109	80-120		
1,1-Dichloropropene	21.5		µg/l		20.0		108	80-120		
cis-1,3-Dichloropropene	21.4		µg/l		20.0		107	80-120		
trans-1,3-Dichloropropene	21.1		µg/l		20.0		106	80-120		
Ethylbenzene	22.6		µg/l		20.0		113	80-120		
Hexachlorobutadiene	24.6	QC2	µg/l		20.0		123	80-120		
2-Hexanone (MBK)	16.9		µg/l		20.0		84	70-130		
Isopropylbenzene	23.3		µg/l		20.0		116	80-120		
4-Isopropyltoluene	22.5		µg/l		20.0		112	80-120		
Methyl tert-butyl ether	20.0		µg/l		20.0		100	80-120		
4-Methyl-2-pentanone (MIBK)	19.6		µg/l		20.0		98	70-130		
Methylene chloride	14.6	QC2	µg/l		20.0		73	80-120		
Naphthalene	19.3		µg/l		20.0		97	80-120		
n-Propylbenzene	22.1		µg/l		20.0		110	80-120		
Styrene	22.2		µg/l		20.0		111	80-120		
1,1,1,2-Tetrachloroethane	21.0		µg/l		20.0		105	80-120		
1,1,2,2-Tetrachloroethane	20.9		µg/l		20.0		104	80-120		
Tetrachloroethene	22.4		µg/l		20.0		112	80-120		
Toluene	20.1		µg/l		20.0		101	80-120		
1,2,3-Trichlorobenzene	21.8		µg/l		20.0		109	80-120		
1,2,4-Trichlorobenzene	23.1		µg/l		20.0		116	80-120		
1,1,1-Trichloroethane	19.7		µg/l		20.0		98	80-120		
1,1,2-Trichloroethane	19.8		µg/l		20.0		99	80-120		
Trichloroethene	18.1		µg/l		20.0		91	80-120		
Trichlorofluoromethane (Freon 11)	16.0		µg/l		20.0		80	80-120		
1,2,3-Trichloropropane	19.9		µg/l		20.0		99	80-120		
1,2,4-Trimethylbenzene	21.7		µg/l		20.0		109	80-120		
1,3,5-Trimethylbenzene	21.9		µg/l		20.0		110	80-120		
Vinyl chloride	13.8	QC2	µg/l		20.0		69	80-120		
m,p-Xylene	23.3		µg/l		20.0		117	80-120		
o-Xylene	21.5		µg/l		20.0		107	80-120		
Tetrahydrofuran	17.1		µg/l		20.0		86	70-130		
Tert-amyl methyl ether	20.8		µg/l		20.0		104	70-130		
Ethyl tert-butyl ether	20.9		µg/l		20.0		104	70-130		
Di-isopropyl ether	20.4		µg/l		20.0		102	70-130		
Tert-Butanol / butyl alcohol	172		µg/l		200		86	70-130		
Surrogate: 4-Bromofluorobenzene	51.9		µg/l		50.0		104	80-120		
Surrogate: Toluene-d8	49.4		µg/l		50.0		99	80-120		
Surrogate: 1,2-Dichloroethane-d4	45.6		μg/l		50.0		91	80-120		
Surrogate: Dibromofluoromethane	48.6		μg/l		50.0		97	80-120		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1505511 - General Preparation										
<u>Blank (1505511-BLK1)</u>					Pre	epared & Ar	nalyzed: 27	-Mar-15		
Nitrate/Nitrite as N	< 0.0100	U	mg/l	0.0100						
LCS (1505511-BS1)					Pre	epared & Ar	nalyzed: 27-	- <u>Mar-15</u>		
Nitrate/Nitrite as N	0.255		mg/l	0.0100	0.250		102	90-110		
Reference (1505511-SRM1)					Pre	epared & Ar	nalyzed: 27-	- <u>Mar-15</u>		
Nitrate/Nitrite as N	0.307		mg/l	0.0100	0.314		98	85-115		

Notes and Definitions

- D Data reported from a dilution
- J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
- R01 The Reporting Limit has been raised to account for matrix interference.
- U Analyte included in the analysis, but not detected at or above the MDL.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Nicole Leja

646 Camp Ave * North Kingstown * RI * 028524008 * 401-732-3400 * 401-732-3499 www.spectrum-analytical.com	Relinquished by: Auto Date/Time Relinquished by: Auto Date/Time Received by: Auto Date/Time Received by: Auto Date/Date 3/22/15/11:38 Received by: Ul	Use 'Client Sample IDs' when reporting data. If needed, truncate 'Client Sample IDs' to fit on reports. Use full 'Client Sample ID' when generating EDD. Comments:	1) 524.2, VOC 524.2 BY GC-MS 2) E353.2_NO2NO3, NITROGEN (NITRATE) BY AUTOMATED CD REDUCTION	POT-1 SCCUP21-01 03/20/2015 12:30 2 Aqueous P0342-11A POT-1 J 03/20/2015 12:30 1 Aqueous P0342-11C	EQuISFacilityCode: N/A # = number of containers, Client Sample ID Collection Date # Matrix DUP/MS/MSD Mitkem Samp	Subcontractor: Due Date: 4/1/2015 Spectrum Analytical, Inc Agawam, MA FAX. Due Date: 4/1/2015 11 Almgren Drive FAX. Due Date: Agawam, Massachusetts 01001 Purchase Order: P0342 Phone: (413) 789-9018 EDD Types: Please generate a Little PEL EDD	CHAIN-OF-CUS WorkOrder : P0342 Project: Jamestown Landfill, 3/2015
0,2/1/08 P 9- 123 P034	Logan <u>123/15 11:36</u> Page 1 of 1 03/20/2015	ple ID' when generating EDD.		0342-11A X	Mitkem Sample ID 524.2 2		TODY

Page 1 of 2

CERTIFICATE OF ANALYSIS

Spectrum Analytical, Inc. Attn: Mr. Edward A. Lawler 646 Camp Avenue N. Kingstown, RI 02852
 Date Received:
 3/20/2015

 Date Reported:
 3/24/2015

 P.O. #:
 P0342

 Work Order #:
 1503-05555

DESCRIPTION: PROJECT #P0342 JAMESTOWN LANDFILL, 3/2015

Subject sample(s) has/have been analyzed by our Warwick, R.I. laboratory with the attached results.

Reference: All parameters were analyzed by U.S. EPA approved methodologies. The specific methodologies are listed in the methods column of the Certificate of Analysis.

Data qualifiers (if present) are explained in full at the end of a given sample's analytical results. The Detection Limit is defined as the lowest level that can be reliably achieved during routine laboratory conditions.

The Certificate of Analysis shall not be reproduced except in full, without written approval of R.I. Analytical. Results relate only to samples submitted to the laboratory for analysis. Test results are not blank corrected.

Continue the contract of the second s

Certification # (as applicable to the sample's origin state): RI LAI0033, MA M-RI015, CT PH-0508, ME RI00015, NH 2537, NY 11726

If you have any questions regarding this work, or if we may be of further assistance, please contact our customer service department.

Approved by:

Sharon Baker MIS / Data Reporting

enc: Chain of Custody

Page 2 of 2

R.I. Analytical Laboratories, Inc.

CERTIFICATE OF ANALYSIS

Spectrum Analytical, Inc. Date Received: 3/20/2015 Work Order #: 1503-05555

Sample # 001 SAMPLE DESCRIPTION: SAMPLE TYPE:GRAB	POT-1 P0342-111	D	SAMPLE I	DATE/TIME:	3/20/2015 @ 12:30	
PARAMETER Total Coliform (MPN)	SAMPLE RESULTS <2	DET. LIMIT 2	UNITS MPN/100 ml	METHOD SM9221B 19-21 ed.	DATE/TIME ANALYZED 3/20/2015 16:49	ANALYST DRF

7		Ü	HAIN	CHAIN-OF-CUSTODY RECORD	ISU	ΛODY	REC	ORD	
SPECTRUM ANALTITICAL. INC. Resemble HAVIBAL TECHNOLOCY		WorkOrder : P0342 Project: Jamest Benort Tune - I EVEL 2	r: P0342 *: Jamesto	<pre><order +="" -="" 2015="" 2<="" 3="" :="" fvfl="" i="" jamestown="" landfill,="" p0342="" pre="" project:="" tyne=""></order></pre>	/2015	В	Domination Trat	ž	
Subcontractor: RI Analytical Laboratory		Due Date : FAX Due Date :	Due Date : 4/1/2015 Due Date : 2/1/2015			-		5	
41 Illinois Ave Warwick, RI 02886		Report To:Edward Purchase Order:P0342	Report To: Edward A Lawler ase Order: P0342	Lawler					
Phone: (401) 737-8500		EDD Types	EDD Types : EQUIIS_GZA	ZA		 			
EQuISFacilityCode: N/A		# = number of containers	iers		35318				
Client Sample ID	Collection Date	# Matrix DUF	M GSW/SW/dng	Mitkem Sample ID	5WS				
POT-1	03/20/2015 12:30	1 Aqueous	- B	P0342-11D	x				
1) SM9221B, TOTAL COLIFORM									
· ·									
Use 'Client Sample IDs' when reporting data. If needed, truncate 'Client Sample IDs' to fit on reports. Use full 'Client Sample ID' when generating EDD. Comments: These samples are expected to contain low coliform concentrations, please analyze at appropriate dilution to report 2 or 3 <u>CFU/100mL</u>	runcate 'Client Sample II d to contain low colif	Ds' to fit on reports. Use f	full 'Client Samp please analy	el ID' when generati ze at appropriate	ing EDD. e dilution t	o report 2 o	13		
Ja Marta	Date/Time	ime	N	(Di	Date/Time	03/20/2015	

1503-06655

h.c.

1

Page 62 of 68

Spectrum Analytical Inc. - North Kingstown RI -- Rhode Island Division ^{Client ID: GZA_PROV}
Client ID: GZA_PROV
Case: HC D

WorkOrder: P0342

EDD: EQUIS_GZA

Fax Due: Fax Report:

2

Report Level: LEVEL

HC Due: 04/01/15

Special Program:

Client ID:	Client ID: GZA_PROV Case:
Project:	Project: Jamestown Landfill SDG:
WO Name:	WO Name: Jamestown Landfill, 3/2015
Location:	Location: JAMESTOWN_LF, PO: JAMESTOWN_LF,

Comments: N/A

SEL Storage HT = Test logged in but has been placed on hold VOA VOA VOA VOA VOA VOA VOA VOA VOA M3 МЗ MЗ MЗ МЗ MЗ ШЗ MЗ MЗ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ > ≻ ≻ ≻ ≻ ≻ > > ≻ > MS ΗT ΗĘ Samp / Lab Test Comments / Report to PQL only / RI Landfill List SW8260_W SW6020_W SW8260_W SW6020_W SW8260_W SW8260_W SW6020_W SW6020_W SW8260_W SW8260_W SW6020_W SW8260_W SW6020_W SW6020_W SW8260_W SW6020_W SW8260_W SW6020_W Test Code Aqueous Matrix Date Recv'd 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 03/20/2015 11:30 03/20/2015 Point 2-09B GZ-8 03/20/2015 11:30 03/ $\Theta_{\rm F}$ = Fraction logged in but all tests have been placed on hold 03/20/2015 11:30 03/19/2015 11:15 03/19/2015 12:00 03/20/2015 10:45 03/20/2015 09:45 03/19/2015 12:30 03/20/2015 10:45 03/19/2015 10:40 03/19/2015 12:00 03/20/2015 09:00 03/20/2015 09:45 03/19/2015 12:30 03/19/2015 13:00 03/19/2015 11:15 03/19/2015 13:00 03/19/2015 10:40 03/20/2015 09:00 **Collection Date** Lab Samp ID Client Sample ID GZ-7S GZ-7D GZ-7D GZ-7S GZ-5 GZ-6 GZ-8 GZ-1 GZ-2 GZ-2 GZ-3 GZ-3 GZ-4 GZ-4 GZ-5 GZ-6 GZ-1 P0342-01A ^{20342-01B} P0342-03A -0342-04B -0342-06A P0342-07B ²0342-08B -0342-09A -0342-02B -0342-04A ²0342-05B P0342-06B -0342-07A P0342-08A -0342-02A ^{20342-03B} P0342-05A

Page 01 of 02

Lab Client Rep: Edward A Lawler

03/23/2015 12:45

of 68

Spectrum Analytical Inc. - North Kingstown RI -- Rhode Island Division

WorkOrder: P0342

Case: SDG: WO Name: Jamestown Landfill, 3/2015 **Project:** Jamestown Landfill Location: JAMESTOWN_LF, Client ID: GZA_PROV

Comments: N/A

Report Level: LEVEL 2 HC Due: 04/01/15 Fax Report: Fax Due:

EDD: EQUIIS_GZA **Special Program:**

PO: JAMESTOWN LF

P0342-10A GZ-9 P0342-10B GZ-9 P0342-11A POT-1		Date Recv d	Maurix	Collection Date Date Recv'd Matrix Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
	03/20/2015 12:15 03/20/2015	03/20/2015	Aqueous	SW8260_W	/ RI Landfill List	Y VOA
	03/20/2015 12:15 03/20/2015	03/20/2015	Aqueous	Aqueous SW6020_W	/ Report to PQL only	Y M3
	03/20/2015 12:30 03/20/2015	03/20/2015	Aqueous	524.2	/ SPECTRUMFor POT-1 only Sub to Spectrum	SUB
P0342-11B POT-1	03/20/2015 12:30 03/20/2015	03/20/2015	Aqueous	SW6020_W	/ Report to PQL only	Y M3
P0342-11C POT-1	03/20/2015 12:30 03/20/2015	03/20/2015	Aqueous	E353.2_NO2NO3	/ SPECTRUMSub to Spectrum	SUB
P0342-11D POT-1	03/20/2015 12:30 03/20/2015	03/20/2015	Aqueous	SM9221B	/ RIALSub to RIAL, low coliform comment	SUB
P0342-12A TRIP BLANK	03/19/2015 09:00 03/20/2015	03/20/2015	Aqueous	SW8260_W	/ RI Landfill List	Y VOA

AAAFF raction logged in but all tests have been placed on holdAAB03/23/2015 12:45Lab Client Rep

HT = Test logged in but has been placed on hold

Special Handling: TAT- Ind icate Date Needed: STAMAN • All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. • Samples disposed of after 60 days unless otherwise instructed.	32220,27	Jamestrun Land BIL	Current Pours State: RZ		e below: QA/QC Reporting Notes:	QA/QC Reporting Level		Dither	State-specific reporting standards:										IT PDF. Creel	erikebel	ceipt: Custody Seals:	Ambient Code Creening Control of
DDY RECORD coad, Ste A □ 646 Camp Avenue 6634 N Kingstown, RI 02852 607 (401) 732-3400	Project No.:	Site Name: Jan	,	- Dampier(s):	List preservative code below: 2 4	Analyses:	সন্থ	n yr	12 21 Nov	X X	44	x Y	x X	× ×	×× XX		XX	XX	Temp°C SEDD Format	3. % 🛛 E-mail to _	Condition upon re	
F CUSTODY I a 8405 Benjamin Road, Ste A Tampa, FL 33634 (813) 888-9507				KQN:	bic Acid 7=CH ₃ OH 12=	Containers:	lass	aiV AC D rədr C Cla	XithsM A of V a of An A of An A of Ch # of Pla	En 2 1	En 2 1	Gev 2 1	Gur 2 -			En 2	6w 2 1	Er 2	Date: T	3,200-15- 1300		
CHAIN OF 11 Almgren Drive Agawam, MA 01001 (413) 789-9018	Invoice To:			P.O. No.:	4=HNO ₃ 5=NaOH 6=Ascorbic Acid 10=H ₄ PO ₄ 11= 12=	Vas	SL=Sludge A=Air X3=		Jype T	1 10 45 9	1040 C	1115 6-	1925 1200 G- 1	20-15 0900 G	- 0945 E	5 3	- 1130 0		sived by:	ague atunder		
SPECTRUM ANALYTICAL, INC. Feduring HANIBAL TECHNOLOGY	Report To: GZA 530 Broed wew		Telephone #: 40/-43/-4/40	Project Mgr. Erik BelSt	S2O ₃ 2=HCl 3=H ₂ SO ₄ SO ₄ 9= Deionized Water	Vater GW=Groundwater	Water SO=Soil X2=	G=Grab C=Composite	I ak 14-	CZ-1	~	GZ-3 3	62-4 3	CZ-S: 3.	2-6	(2-7) (2-7)	8-Z.	62-9 3	by:			

Special Handling:	TAT- Ind icate Date Needed: STAMDAR	Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	32220,27	in Land 61/	-		QA/QC Reporting Notes:	QA/QC Reporting Level	□ Level I □ Level II □ Level II □ Level IV	Other	State-specific reporting standards:									Condition upon receipt: Custody Seals: Present Intact Broken Ambient Icod Refigerated DI VOA Frozen Soil Jar Frozen	Revised Feb 2013
	\cap	□ 646 Camp Avenue Min. 2 N Kingstown, RI 02852 · Sampl (401) 732-3400 other	Project No.: 3220	Site Name: Jame Shurry	Location: Sunglowing	Sampler(s): \mathcal{EMB}	List preservative code below:	Analyses:	тор ј Л47 И	10) 2744 M. 	134el 2,1N 5 57 3Л	X X X X X	×				Temp ^{CC} DEDD Format	3. Y DE-mail to		Condition upon receipt. Cust	
Page Or O	F CUS	 8405 Benjamin Road, Ste A Tampa, FL 33634 (813) 888-9507 				RQN:	Ascorbic Acid 7=CH ₃ OH 12=	Containers:	ssslt	iV AC rber (D rss.	эqүГ хітіяМ Майтіх Лото Алото	5 DW 2 3	~				Date:	3-20-15 1300			www.spectrum-analytical.com
	CHAIN O	□ 11 Almgren Drive Agawam, MA 01001 (413) 789-9018	Invoice To:			P.O. No.:	4=HNO ₃ 5=NaOH 6= 10=H ₃ PO ₄ 11=	WW=Wa	Soil SL=Sludge A=Air X3=	C=Composite	Date	15 1230 (3-19-15 0900				Received by:	a jours a Huntty	<i>d</i>		
	I,	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	Report To: 624			Telephone #:	1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Va	O=Oil SW= Surface Water SO=Soil X1= X2=	G=Grab C=Co	Tah Id: Samule Id:	°°	TripBlank				Relinquished by:	An S			

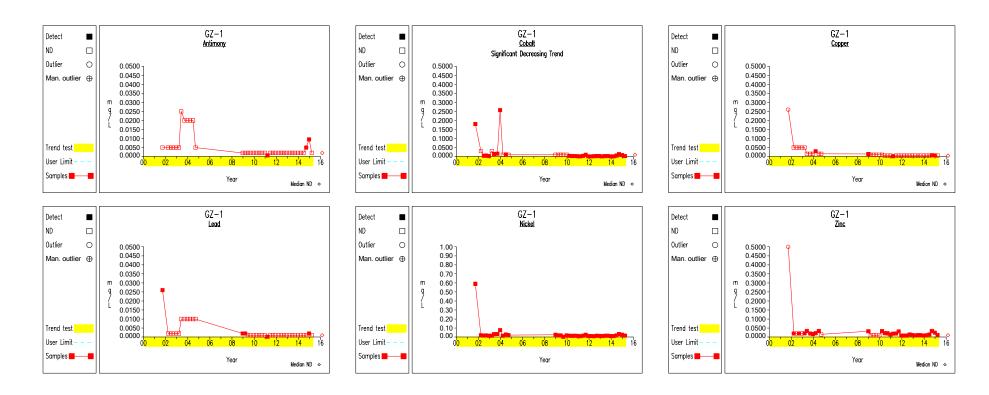
P0342

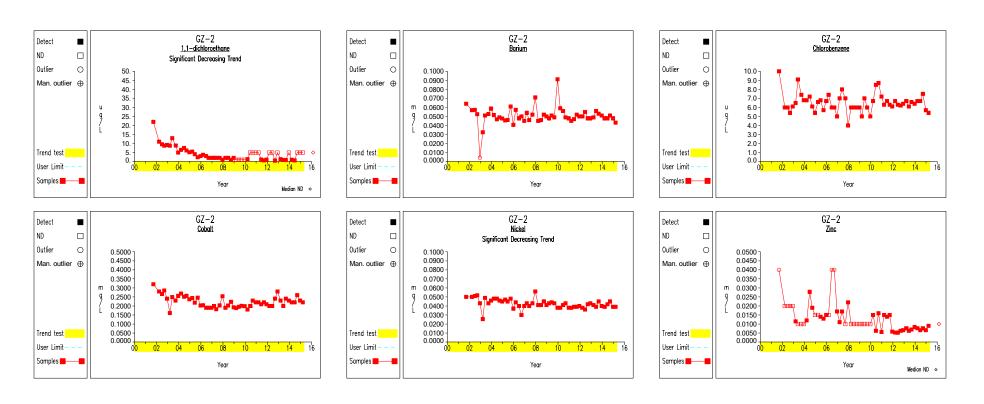
Page 66 of 68

	rum Analytical Inc.	- North Kind	gstow	n RI	Rh				n	
Received By:	- WSK						-	of 00		
Reviewed By:						LO	g-in	Date 03/2	0/2015	
Work Order: P0342	Client Name: G		nental	, Inc	•					
_	Jamestown Landfill, 3	/2015								
Remarks: (1/2) Please s sample/extract transfer				Prese	rvatio	n (pH)			Soil Heads or Air Bub	
submitted with this dat		Lab Sample ID	HNO3	H2SO4	HCl	NaOH H	I3P04	VOA	or equal t	
1. Custody Seal(s)	Present / Apsent	-						Matrix		
A Y		P0342-01	<2					Н		
· · ·	Intact/Broken	P0342-02	<2					Н		
2. Custody Seal Nos.	N/A	P0342-03	<2					Н		
3. Traffic Reports/ Chain	Present / Apsent	P0342-04	<2					Н		
of Custody Records (TR/COCs) or Packing		P0342-05	<2					. Н		
Lists		P0342-06	<2					Н		
		P0342-07	<2			-		·Н		
4. Airbill	AirBill/Sticker	P0342-08	<2					Н		
1	Present / Absent	P0342-09	· <2					Н		
5. Airbill No.	Courier N/A	P0342-10	<2					Н		
		P0342-11	<2					Н		
6. Sample Tags	Present / Absent	P0342-12						Н		
Sample Tag Numbers								,		
	Listed /									
(Not Listed on Chain- of-Custody	\mathbf{h}							· ·	
7. Sample Condition	Intact / Broken/									
	Leaking									
×	-							•		
8. Cooler Temperature Indicator Bottle	Present / Absent	\triangleright								
9. Cooler Temperature	3.8 °C	-								
_										
10. Does information on TR/COCs and sample	Yes / No	\triangleright				·				
tags agree?										
11. Date Received at	03/20/2015				-					
Laboratory										
12. Time Received	13:00									
Sample	Transfer									
Fraction (1) TVOA/VOA	Fraction (2) SVOA/PEST/ARC									
Area #	Area #									`
Ву	Ву									
On	On					-				
IR Temp Gun ID:MT-74	· · ·		/OA Ma	trix Key:						
CoolantCondition: ICE						ved Soil		= Air		
Preservative Name/Lot No:				UA = L	Inpreser	ved Aque	ous H	= HCI		
· · ·				M ≕ Me	ЭOH		Е	= Encore		
	. •			N = Na	HSO4		F	= Freeze		
		S	See San	iple Con	dition N	otification/	Correct	ive Action For	rm Yes 🤇	No
		F	Rad OK	Yes	_/_ No					

Sample Condition Form 68

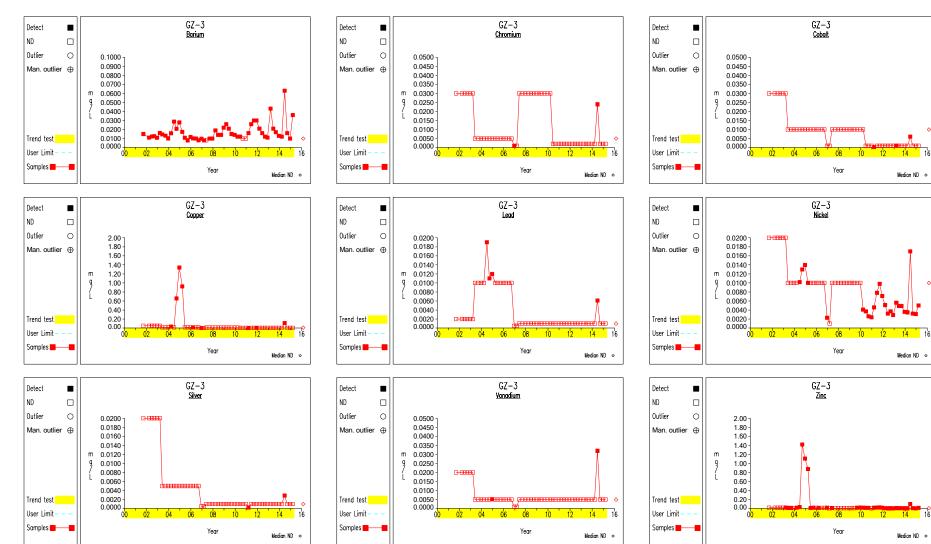
Last Page of Data Report

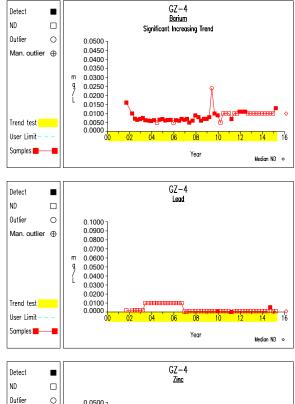

RECORD Special Handling: RECORD TAT- Ind icate Date Needed:StrandornIndext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to laboratory approval.Indext of a comp Avenue- All TATs subject to labo	Project No .: J2220,27 Site Name: James Pun Lund 81/	Location: Schrief Print State: RZ Sampler(s): Erild Beliff	List preservative code below: QA/QC Reporting Notes:	Repoi		State-specific reporting standards:										BEDD Format PDF, excel	erikebe)	Condition upon receipt: Custody Seals: Present Intact Broken Ambient Custody Custody	Revised Feb 2013
DY RECORD Ste A D 646 Camp Aven N Kingstown, RI 02 (401) 732-3400	- Projec	- Location: - Sampler(s	List pr	-74	M Yr C	12 2 Nº	メメ	オオ	メヤ	メ. そ	<u>.</u>	$\times \times $ $\chi \chi$	х Х	$\frac{\times}{\lambda}$	$\frac{\times}{k}$	Temp°C	3.8			
DF CUSTODY H B405 Benjamin Road, Ste A Tampa, FL 33634 (813) 888-9507		RQN:	6=Ascorbic Acid 7=CH ₃ OH 12=	Cont	A Vial mber G lear Gla	tA ło #	G En 2 1	C GW 2 1	C- Gr 2 1	Gh	S.	6 6 6 8		G 64 2 1	C En 2 1	I	3-20-15 1300			www.spectrum-analytical.com
CHAIN (11 Almgren Drive Agawam, MA 01001 (413) 789-9018	Invoice To:	P.O. No.:	4=HNO ₃ 5=NaOH (10=H ₃ PO ₄ 11=	r WW=Wastewater SL=Sludge A=Air X3=	site	Date: Time:	21.	1	. ~			3-20-15-0945 3-19-15- 1220			3-20-15-1215	Received by:	agues Hunder			
SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	Report To: GZA 530 Brazhuan Pravidena RT 17939	184-1	S2O ₃ 2=HCl 3=] 04 9= Deionized V	DW=Drinking Water GW=Groundwater O=Oil SW= Surface Water SO=Soil X1= X2=	G=Grab C=Composite	1 ah Id- Sammle Id-	CZ-1	6	G7-3	62-4	(52-S	62-6 67-7	04-	A	2-9	Relinquished by:	1. 10			

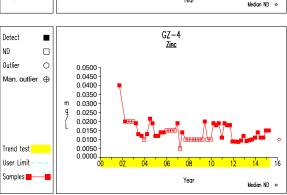

Snecial Handling:	TAT- Ind icate Date Needed: STANDAR	Min. 24-hour notification needed for rushes. • Samples disposed of after 60 days unless otherwise instructed.	32220, 27	Sancstrung Land 61/	Sungfound State: At	EMB	: below: QA/QC Reporting Notes:	QA/QC Reporting Level	□ Level I □ Level II □ Level II		State-specific reporting standards:									Condition upon receipt: Custody Seals: □ Present □ Intact □ Broken □ Ambient □ Iced □ Refigerated □ DI VOA Frozen □ Soil Jar Frozen	Revised Feb 2013
	ODY RECORD	□ 646 Camp Avenue N Kingstown, RI 02852 (401) 732-3400	Project No.:		Location: Sam	Sampler(s):	List preservative code below: \Im 4 \Im 4		чиз) ЛФУ	19) 27hu M.	14е Ціл 5 51 СЛ	X X X X X	×				EDD Format	3.7 \Box E-mail to $-$		Condition upon rece	
	F CUSTODY	□ 8405 Benjamin Road, Ste A Tampa, FL 33634 (813) 888-9507				RQN:	Ascorbic Acid 7=CH ₃ OH 12=	Containers:	ssslt	iV AC nber (B rsar G	Matrix Matrix # of Mr # of Cl # of Cl	· Dw 2 3	~				Late:	5-20-15 1500			
	0	□ 11 Alngren Drive Agawam, MA 01001 (413) 789-9018	Invoice To:			P.O. No.:	4=HNO ₃ 5=NaOH 6= 10=H ₂ PO ₄ 11=	WW=Wa	l SL=Sludge A=Air X3=	osite	Date: Time: Time:	3-20-15 1230 G					Keceived by:	4 AUN R HUNCTED	9		
	7	SPECTRUM ANALYTICAL, INC. <i>Featuring</i> HANIBAL TECHNOLOGY	Report To: GZA			Telephone #: Droiect Mor	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 8- NoHSO 9= Defonized Water	Va		G=Grab C=Composite	Tah Id: Samule Id:	°°	Tripplant				Relinquished by:	and			

-	rum Analytical Inc.	- North Kind	gstow	n RI	Rh			on
Received By:	- WSK)1 of 00	
Reviewed By:						Log-ir	n Date 03/	20/2015
Work Order: P0342	Client Name: G	ZA GeoEnvironm	nental	, Inc	•			
Project Name/Event:	Jamestown Landfill, 3	/2015						
Remarks: (1/2) Please				Prese	rvatio	n (pH)		Soil HeadSpace
sample/extract transfe: submitted with this dat	r Logbook pages ta package.	Tab Gaunda TD		110001	TTC 1	N-011 11200	AOV	or Air Bubble > or equal to 1/4"
		Lab Sample ID	HNO3	H2SO4	HCl	NaOH НЗРО-	[±] Matrix	
1. Custody Seal(s)	Present / Absent	P0342-01	<2				Н	
	Intact / Broken	P0342-02	<2			· · · · ·	Н	
2. Custody Seal Nos.	N/A	P0342-03	<2				H '	
		P0342-04	<2				Н	
 Traffic Reports/ Chain of Custody Records 	Present / Absent	P0342-05	<2				H	· · · · ·
(TR/COCs) or Packing Lists		P0342-06	<2				H	
		P0342-00	<2				· H	•
4. Airbill	AirBill / Sticker	P0342-08	<2				H	· · · · · · · · · · · · · · · · · · ·
I. INTERITE	Present / Absent	P0342-08						
	Present / Absent		<2					
5. Airbill No.	Courier N/A	P0342-10	<2				H	
*		P0342-11	<2				H	
6. Sample Tags	Present / Absent	P0342-12					Н	
Sample Tag Numbers								
	Listed /							
(Not Listed on Chain- of-Custody					ан сайта сайта Сайта сайта сайт		
7. Sample Condition	Intact / Broken/				,			
	Leaking							
	,							
8. Cooler Temperature Indicator Bottle	Present / Absent	\supset						
9. Cooler Temperature	3.8 °C							
9. COOTEL LEmperature								
10. Does information on	Yes / No	\rightarrow				s .		
TR/COCs and sample tags agree?								
		_						
11. Date Received at Laboratory	03/20/2015							
12. Time Received	13:00							
Sample	Transfer							
Fraction (1) TVOA/VOA	Fraction (2) SVOA/PEST/ARG							
Area #	Area #	- -						
By		_			. · ·			
	Ву							
On	On		10 4 4 4	huis / 12				
IR Temp Gun ID:MT-74			VUA IVIA	trix Key:			A - A -	
CoolantCondition: ICE					Inpreser		A= Air	
Preservative Name/Lot No:					-	ved Aqueous		
				M = M			E = Encore	
				N = Na			F = Freeze	
		S	See San	nple Cor	dition No	otification/Corre	ective Action Fo	orm Yes / No
· · · · · · · · · · · · · · · · · · ·					~			
		F	Rad OK	Yes	_/_ No			

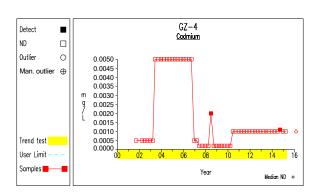
APPENDIX C

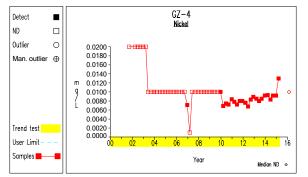

TIMES SERIES PLOTS

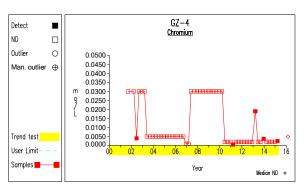


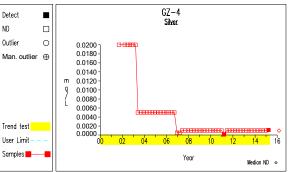

-16

Time Series

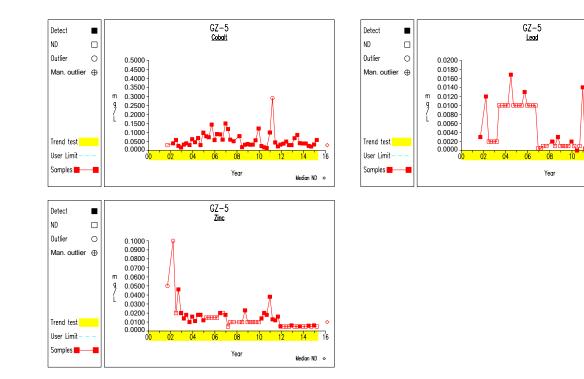


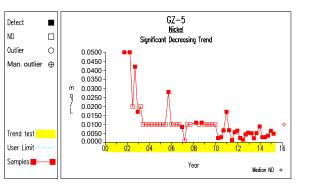

Prepared by: GZA GeoEnvironmental Inc.



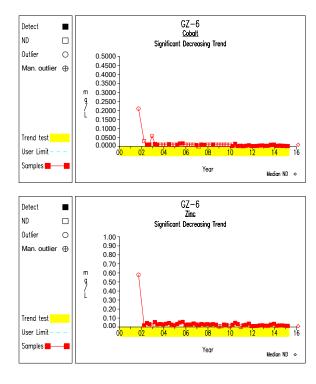


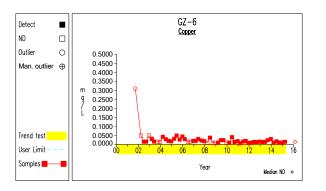
Prepared by: GZA GeoEnvironmental Inc.

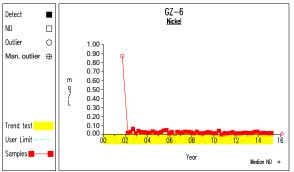


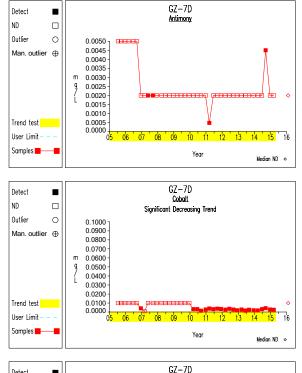

1

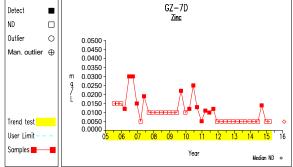
0

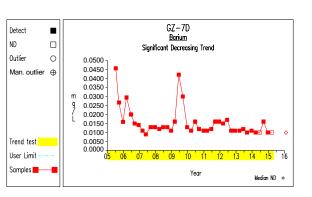

Median ND 🗇

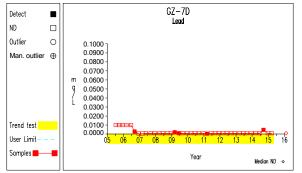

12 14 16

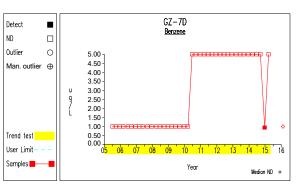


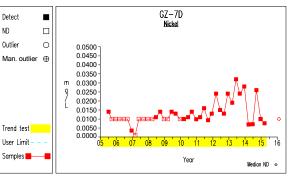



Prepared by: GZA GeoEnvironmental Inc.









Prepared by: GZA GeoEnvironmental Inc.

1

09 10

GZ-7S <u>Nickel</u>

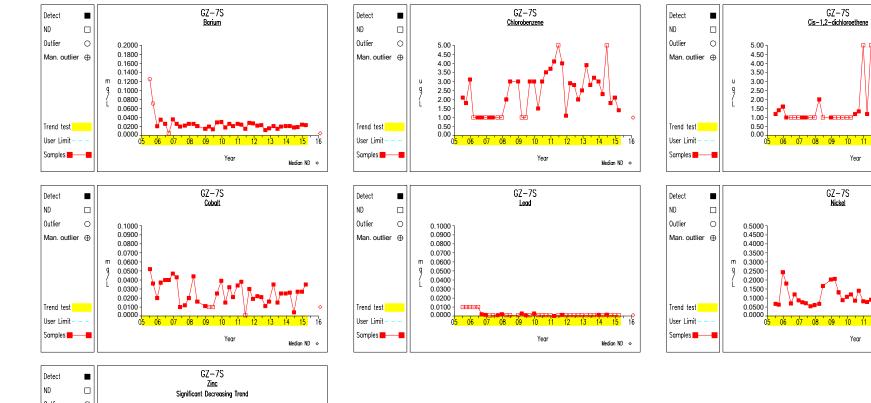
na 10

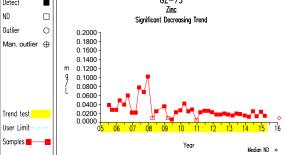
Year

12 13

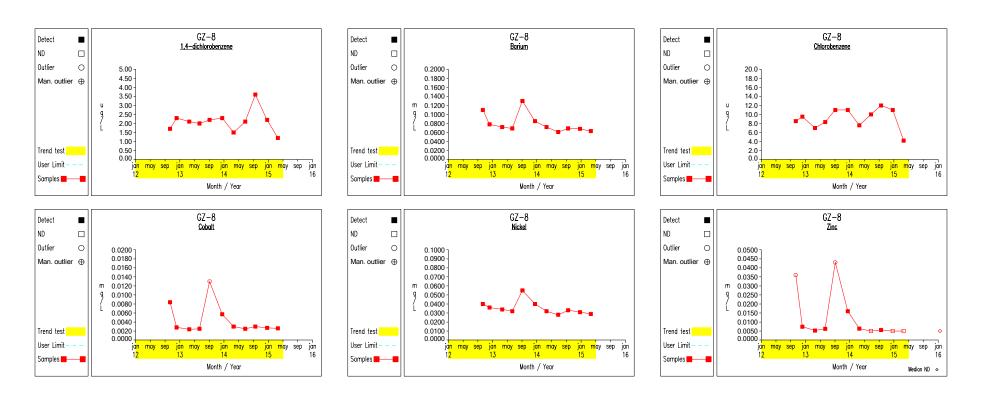
12

Year


14 15 16

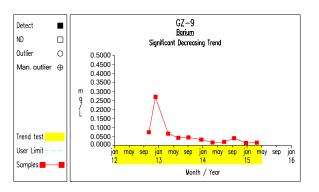

Median ND 🔹

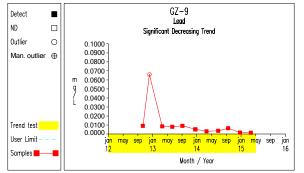
13 14 15 16

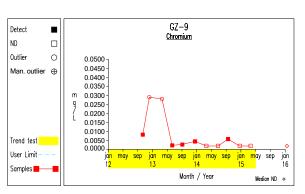

1

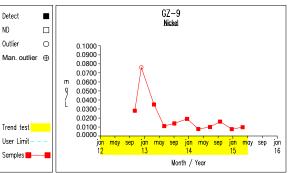
<u>Time Series</u>



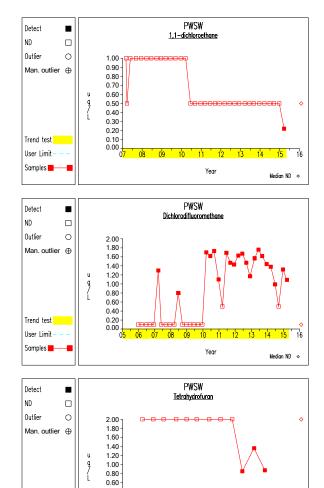

Prepared by: GZA GeoEnvironmental Inc.

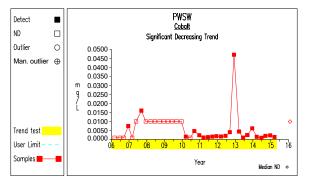


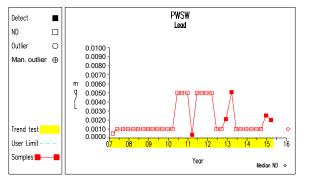


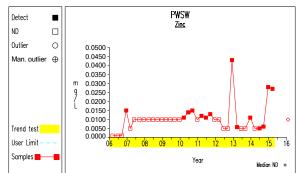


Prepared by: GZA GeoEnvironmental Inc.

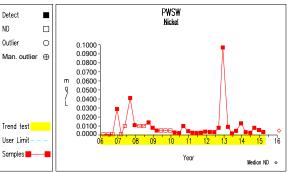








1



Prepared by: GZA GeoEnvironmental Inc.

may sep jan may sep

jan may sep jan may sep jan 14 15 16

Median ND 🗇

Month / Year

0.40

0.20 - 0.00 -

ian

Trend test

User Limit

Samples 📕